

Certified Reference Materials & Supplies

Our Commitment to Quality

VHG Labs' focus on quality begins with the starting materials for our solutions. We use the highest purity elements and compounds available (typically 99.999+%) as well as high purity acids and solvents. Metals are acid pre-cleaned and rinsed with high purity water, and salts are dried to a constant weight. Solutions are prepared gravimetrically, in an ultra clean environment. Acid digestions are performed in pre-cleaned, high density polyethylene (HDPE) or Teflon™ containers to avoid contamination from the reaction vessel. Balances and volumetric flasks are calibrated according to NIST procedures. All bottles are acid leached and then triple rinsed in deionized water prior to use. Petroleum standards are blended in pre-cleaned HDPE or glass reactors.

Each VHG calibration standard is subjected to rigorous QA checks prior to shipment. Raw materials are assayed and analyzed for trace impurities. Major constituents are generally verified both instrumentally, against the appropriate NIST SRM (when available), and through classical wet chemical methods (titrimetry or gravimetry). All VHG standards are accompanied by a comprehensive Certificate of Analysis (COA). Each COA is supported by an unbroken chain of comparisons with traceability to national or international standards of measurement.

Certifications

VHG Labs maintains ISO 9001, ISO Guide 34, and ISO/IEC 17025 certifications as three aspects of our commitment to quality. In addition, we have the most demanding quality assurance protocols and tightest purity specifications in the business. All VHG standards undergo final QA checks, and are awarded a comprehensive Certificate of Analysis (COA) only when they have met or surpassed our stringent requirements.

VHG Labs in the only manufacturer to employ the National Institute of Standards and Technology (NIST) High Performance ICP-AES Protocol that provides the most accurate certified concentrations and uncertainties, both directly traceable to the appropriate NIST Standard Reference Material (SRM). See Page 38 for information on the NIST High Performance ICP-AES Protocol.

Need Special Sizes, Concentrations, Blends or Solvents?

Not to worry! VHG's extensive experience in creating custom standards and our commitment to service have come together to create VHG LABs' "Custom Spec" Program your guarantee of quality custom standards at reasonable prices.

Whether buying our catalog stock items or custom standards, VHG promises to provide the best products in the industry.

Easy To Use Forms:

This catalog is packed with useful and informative charts, tables and tips-all designed to help in the technical decision- making process. Should your requirements call for C а а

Look for the "CS" symbol:

It's your assurance of quality and ease of Custom Standard ordering. Our specially-designed "Work Sheet and Quote Request" forms take all the guess work out of ordering. Each form can be copied, then mailed, faxed or emailed to us.

Ordering Custom Standards has never been easier!

	•			•		d to assis	t Wii	ın		METAL	UNITS CON	C. ME1	ΓAL	units	CONC. N		UNITS CONC.
CHILICS	ai ques	tions yo	u ma	ay na	ive.					Aluminum A Antimony St		Lead		μg/mL		urium Te	μg/mL
										Arsenic As	μg/mL μg/mL		ium Li tium Lu	μg/mL μg/mL		bium Tb	μg/mL μg/mL
										Barium Ba	μg/mL		nesium Mg	μg/mL		rium Th	μg/mL
													nese Mn	μg/mL		lium Tm	μg/mL
													ry Hg denum Mo	μg/mL μg/mL	Tin		μg/mL
						CUSTO	M IC	N CHRON	1ATOGRAPH`	Y STAN	DARD		mium Nd	μg/mL		nium Ti gsten W	μg/mL μg/mL
							wc	RK SHEET A	ND QUOTE REQ	IFST	/_		Ni	μg/mL		nium U	μg/mL
											V-//-	7	ım Nb	μg/mL		adium V	μg/mL
						stock standards to	save vou	HROMATOGRAPHY time and money,	 Custom standar from high purity 	raw materials			ım Os	μg/mL		rbium Yb	μg/mL
						while removing a error. Our experie	common s	source of day-to-day	and prepared w DI water and ma		LABS		ium Pd horus P	μg/mL μg/mL	Yttr	ium Y	μg/mL μg/mL
						promptly prepare	and delive	er reliable stock	NIST traceable	quality requirem	ents as our		um Pt	μg/mL		_	ug/mL
						standards fully Q0 testing laboratory.	2-checked	I in VHG's analytical	general product • Each Custom S		ad with a		sium K	μg/mL		NO	N-METALS
						,		7	Certificate of A	nalysis sheet.	eu with a		odymium Pr	r μg/mL		omine Br	μg/mL
													um Re um Rh	μg/mL		rbon C	μg/mL
CUS	N MOT	1ETALLO	ORG	SANIC	C STA	NDARD							um Rh	μg/mL μg/mL		ine I	μg/mL μg/mL
								ent Table (Belo	w) Per Standard Req	uested			nium Ru	μg/mL μg/mL		con Si	μg/mL
		RK SHEET AN						TS CONC.	IC ANALYTE	UNITS	CONC.		ium Sm	μg/mL		fur S	μg/mL
	PI	ease Fill Out One Per Stand	Elemen	t Table (B	Below)	V7 <i>U</i>		L	Oxalate	mg/L			ium Sc	μg/mL			
<u>CS</u>		rei stand	ara Requ	Jesteu		LABS			Perchlorate Phosphate	mg/L mg/L			um Se	μg/mL		ISOTOPIC	S & SPECIATION
								Ĺ.	Sulfate	mg/L			Ag m Na	μg/mL μg/mL	-		us to discuss
METAL	UNITS CC	NC. METAL	UNITS	CONC.	METAL	UNITS CONC.		-	Ammonium	mg/L			ium Sr	μg/mL		Call	us to discuss
Aluminum Al Antimony Sb	µ9/9	Copper Cu	μg/g μg/g	-	Rhodium Rh Selenium Se	μg/g μg/g		Ĺ	Barium	mg/L			um Ta	μg/mL			
Arsenic As	μg/g μg/g	Iron Fe	µ9/9		Selenium Se Silicon Si	μg/g		1	Calcium	mg/L mg/L			se circ	le one):			
Barium Ba	µ9/g	Lanthanum La	µg/g		Silver Ag	µg/g		L	Magnesium	mg/L			Α.	GF	AA	Other:	
Beryllium Be	н9/9	Lead Pb	μg/g		Sodium Na	µg/g		-	Potassium Sodium	mg/L mg/L			Units: w	//v (mg/L) is a	ssumed. YOU M	UST SPECIF	Y IF OTHERWISE.
Bismuth Bi Boron B	μg/g	Lithium Li Magnesium Mg	µg/g µg/a		Strontium Sr Sulfur S	µ9/9			Socialii				- 1	Specify # bott	les or special pac	kaging reqs.	
Bromine Br	µ9/9	Manganese Mn	µ9/9		Thallium TI	μg/g		-	Ammonia	mg/L).				
Cadmium Cd	µ9/g	Mercury Hg	µg/g	-	Tin Sn	µg/g											
Calcium Ca	μg/g	Molybdenum Mo	µ9/9		Titanium Ti	µg/g								End I	User? Yes [□ No □	
Cerium Ce Chlorine CI	μg/g	Nickel Ni Phosphorus P	µ9/9		Vanadium V Yttrium Y	нg/g нg/g									End User:	_ 110 _	
Chromium Cr	µ9/9	Potassium K	μg/g		Zinc Zn	µg/g		Vater Units: w/v	(mg/L) is assumed. YOU MUS	SPECIFY IF OTI	IERWISE.			_ Date			
Cobalt Co	μ9/g	Platinum Pt	µg/g	-	Zirconium Zr	µg/g		aging regs.						_ Email		_	
															umber:		
		ysis (please circ						24 hours (M-F). ict delivery eded.					mail	_ / 42.14	umber		
XRF	ICP	RDE	0	ther:				eded.					maii		cust	svc@vh	glabs.com
	2-oz. Minimum.	Units: w/w (µlg/g) is a	ssumed. YO	OU MUST SPI	ECIFY IF OTHE	ERWISE.			End User? Yes	□ No □			50		Return Th	nis Form	To VHG Labs
		le light hydrocarbon (i							Name End User:								
Tunical colu	nquire about other	solvents or elements no	shown in a	bove table.	Some may no	t be available and/or			Date:								
Call us to in	special solvent re	juirements.							Email:								
Typical solv Call us to ir will have s		r	nanifu # bat	Was as special	l packaging req	.			Fax Number:								
Call us to ir will have s			pecity # box	nes or special	· packaging req												
Call us to in will have s	Volume	. ,						-5180									
Call us to in will have s Solvent: We will str Please sta	Volume	24 hours (M-F).						discuss:		stsvc@vhgla							
Call us to in will have s Solvent: We will str Please sta	Volume	24 hours (M-F).)622-7660	Return	This Form T	VHG Labs						
Call us to in will have s Solvent: We will str Please sta	Volume	24 hours (M-F).	. End	User? Ye	es No [,022 .000					1				
Call us to in will have s Solvent: We will str Please sta requireme	Volume rive to quote within ate anticipated prod ents or if RUSH is n	24 hours (M-F).						/022 7000									
Call us to in will have s Solvent: We will str Please sta requireme Name:	Volume rive to quote within ate anticipated prod ents or if RUSH is n	24 hours (M-F).		ne End User.				7022 1000									
Call us to ir will have s Solvent: We will str Please sta requireme Name: Company:	Volume rive to quote within ate anticipated prod ents or if RUSH is n	24 hours (M-F).	Nam	e End User.				,522 7555									
Call us to ir will have s Solvent: We will str Please sta requireme Name: Company: Address:	Volume rive to quote within ste anticipated prod ents or if RUSH is n	24 hours (M-F).	Nam Date	ne End User.				,022 7000									
Call us to ir will have s Solvent: We will str Please sta requireme Name: Company: Address: Address: Phone Nutl	Volume rive to quote within the anticipated produits or if RUSH is n	24 hours (M-F). uct delivery eded.	Nam Date	ne End User iii; Number: _	r:			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Solvent: We will str Please starquireme Name: Company: Address: Address: Phone Nun Fax num	Volume Volume	24 hours (M-F). Let delivery eded.	Nam Date	ne End User.	r:	hglabs.com		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Call us to ir will have s Solvent: We will str Please sta requireme Name: Company: Address: Address: Phone Nun Fax num Email, oi	Volume rive to quote within the anticipated produits or if RUSH is n	24 hours (M-F). uct delivery eded.	Nam Date	ne End User.	r:			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Call us to ir will have s Solvent: We will str Please sta requireme Name: Company: Address: Address: Phone Nun Fax num Email, oi	Volume where to quote writhin the anticipated proof and to or if RUSH is not in the control of t	24 hours (M-F). uct delivery eded.	Nam Date	ne End User.	r:	hglabs.com		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Call us to ir will have s Solvent: We will str Please sta requireme Name: Company: Address: Address: Phone Nun Fax num Email, oi	Volume where to quote writhin the anticipated proof and to or if RUSH is not in the control of t	24 hours (M-F). uct delivery eded.	Nam Date	ne End User.	r:	hglabs.com		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									

Please See Pages 107-109 for copies of VHG's custom quote forms.

Certificate of Registration

This certificate has been awarded to

INTERLINK SCIENTIFIC SERVICES LTD

12 Swan Business Park
Sandpit Road
Dartford
Kent DA1 5ED

in recognition of the organization's Quality System which complies with

ISO9001: 2008

The scope of activities covered by this certificate is defined below

THE SALE, MAINTENANCE AND CALIBRATION OF CHROMATOGRAPHY, MASS SPECTROMETRY, SPECTROSCOPY AND DISSOLUTION EQUIPMENT WITH ASSOCIATED SPARE PARTS.

Certificate Number: 12206 Issue No. 6

Date of Issue:

01 October 2010

(28/09/2004)


Expiry Date:

September 2013

Issued by:

On behalf of the Schemes Manager

URS is a member of Registrar of Standards (Holdings) Limited a UK registered company.

About Interlink Scientific Services Ltd

Interlink Scientific Services Ltd has been steadily increasing over the last 14 years both in size and reputation in the UK market place. It started in 1996 and has built its success on the founder members personal commitment to "Service with Integrity". That commitment has remained unchanged as the company has grown.

No other company in this industry is better equipped to meet your analytical instrument and service needs. Our support of most major instrument manufacturers in the marketplace is un-surpassed, with our continued growth and success allowing us to support all of our customers in their service requirements.

Our commitment to service and support

We are committed to helping laboratories become more efficient and profitable with our high quality, low cost alternative solution. We will provide you with the highest level of support for your laboratory and our goal is that you consider us to be an integral part of your company.

Where are we based?

Our service organisation is based at our headquarters in Dartford and includes service workshop and stock holding facilities.

Our engineers are field based and located in geographically suitable areas to ensure a prompt service to our growing customer base.

What can Interlink Scientific Services Ltd offer you?

Service Support

Our service team has the unique capability of offering you a high quality service and support package throughout many leading manufacturers product ranges. When I.S.S. becomes your service partner you will receive:-

Expertly trained, highly qualified field service engineers who are able to respond rapidly and professionally to your needs. They are fully equipped to enable efficient response to any situation that may arise.

'Off the shelf' or bespoke service contracts for a wide range of laboratory instruments.

Performance Qualification checks post service to guarantee the instruments performance.

Supply of spares and consumables for all major instrument manufacturers.

A range of laboratory instruments for sale with documented performance guarantees.

Laboratory Instrument Support

I.S.S. Instrument Support

Our organisation has office based staff dedicated to supplying the instrument support and technical assistance you require.

When you place a request for support, you only need to make one call to our office and we will co-ordinate your enquiry to ensure you get the information you require and a prompt, efficient response.

We can also put you in direct contact via telephone or E:mail to the relevant person within I.S.S. to help you with any technical assistance you may require.

Hardware and Software Assistance

Product support when you need it most

When you require hardware or software support on your instruments, we recognise the importance of responding to your enquiry in the fastest time possible to ensure the minimum amount of downtime.

During the lifetime of your equipment, you have access to our technical support team and engineering staff to assist you with any enquiries you may have.

All calls for assistance are coordinated through our office, enabling your enquiries to be promptly answered.

We offer a wide range of hardware and software support to ensure compliance of your system with any future regulatory requirements.

Training courses to meet your requirements

The more you understand the instrument, the more productive it will become in your laboratory

As a valued I.S.S. customer, we can offer you software and hardware training courses at regular intervals or on demand. Our exclusive training courses can be held at either your site or at our headquarters in Dartford.

We can offer courses dedicated to laboratory technicians who need instruction on basic operation and maintenance of your instruments and in addition, offer a range of customised courses that are specific to our customers who have their own internal technical service departments or specific training needs.

Further information on our training courses can be obtained by calling our office.

Instrument validation and certification

Do you work within an ISO, MCA or FDA regulated environment?

Interlink Scientific Services Ltd can offer a wide range of products to assist you in meeting your compliance requirements.

We can offer your organisation off the shelf or bespoke Performance Qualification (PQ) protocols to aid you in your laboratory compliance needs.

Our team can also provide you with the validation certification required for all aspects of GLP/GMP and ISO regulated areas and we work in partnership with the UK's leading pharmaceutical companies to ensure that our protocols meet the high standards that are expected in a regulated laboratory environment.

In House Repairs

Let us make your tired instruments spotless and operate like new!

Our in-house repair facilities located in our head office are fully equipped to evaluate, refurbish and repair your instruments all the way down to component level.

We offer the following :-

- Discounted Hourly Service Rates.
- Equipment can be repaired at our offices eliminating travel charges.
- Identification of intermittent or chronic analytical problems.
- Loan instruments can be provided for a nominal charge.

Non contract repairs

Do you require repairs on the instrument but have no budget left for service contracts?

We are happy to offer a non contract repair on instruments that you do not have service cover on. This is ideal for customers who have limited operating budgets but still require a high quality service on their instruments.

We offer the following :-

- On site repair or service at our current labour and travel rates.
- Equipment can be repaired at our offices eliminating travel charges.
- All parts needed for the repair will be invoiced at our current list prices.
- Loan instruments can be provided for a nominal charge.

Why do you need an I.S.S. preventative maintenance contract?

How equipment cover benefits you

Preventative Maintenance is required to minimise the occurrence of equipment failure as well as to extend the service life of your laboratory instruments. A correctly functioning instrument means less downtime and more productivity in your laboratory.

In order to obtain the highest performance of your laboratory instrumentation, the maintenance procedures include inspection, cleaning, configuration and verification of the instruments performance.

All measuring equipment used by I.S.S. engineers are regularly maintained and traceable to accredited UK standards suppliers.

All procedures are performed within the strict guidelines outlined by I.S.S. and are regularly reviewed.

Whose and what equipment can we service?

Which equipment in your laboratory can we service?

The list is growing rapidly as we are currently working in partnership with some of the UK's largest pharmaceutical companies to bring new instruments on board. If your instrument type is not on the list then please do not assume we cannot work on it until you have spoken to us. We currently work on :-

HPLC, GC, GCMS, LCMS, Dissolution baths and a broad range of spectroscopy instruments.

What are the financial benefits to you?

Are your laboratory equipment servicing budgets beginning to give you a headache!

At Interlink Scientific Services, we charge considerably less for servicing your instrumentation and normally utilise spares from the same source as those supplied by the manufacturer.

If your laboratory contains a mixed assortment of instruments, we can offer considerable financial savings.

Think of how convenient it will be to have all you preventative service work handled by one company, saving you time and money as we can do all the scheduling if it is required.

What type of service contracts can we offer you?

In short, whatever type is appropriate to you and your laboratory, 6 monthly performance checks or yearly preventative maintenance with full performance qualification after

We offer many types of service contracts and can design bespoke ones to ensure all your needs are met.

When your equipment is covered by an I.S.S. service contract, you have the assurance that your equipment is being serviced by qualified engineers and that priority is given to callouts and service visits which have been requested by contract holding customers.

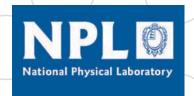
What is included in a preventative maintenance contract?

Preventative Maintenance means minimised downtime

The contract term is for 1 year.

- 1 or 2 preventative maintenance visits will be performed during the contract period at times specified by you.
- Work and travel hours are charged at a reduced rate.
- Consumable parts used are charged at a reduced rate.
- Priority is always given to contract customers when engineer time is scheduled.

Further information on preventative maintenance contracts can be obtained from our head-office.



National Traceable Liquid Standards

The traceability and confidence we can offer your company

The key factor in our success of performing PQ's on all makes and models of analytical instrumentation is our use of qualification methods which are traceable to nationally recognised standards.

All of the standard manufacturers instrument modules can be covered by our independent PQ facility.

We can also supply you with NPL traceable standards for you to perform your own in-house checks on the instrumentation if necessary.

Summary of Interlink Scientific Services

6 key points to remember about ISS

We have :-

- The ability to PQ all manufacturers instruments.
- Full, proven and detailed operational procedures.
- Nationally traceable calibrators and standards.
- Formal certificates of successful performance qualification which are produced on site before we leave.
- Traceably trained performance qualification engineers.
- Independence of OEM's and user company.

ISS Limited are UK Sales and Service Distributers for :-

Waters

www.waters.com

Waters creates business advantages for laboratorydependent organizations to enable significant advancement in healthcare delivery, environmental management, food safety, and water quality.

- Ultra Performance Liquid Chromatography (UPLC)
- High Performance Liquid Chromatography (HPLC)
- Chromatography Columns & Chemistry Products
- Mass Spectrometry Systems
- Laboratory Informatics Solutions
- Comprehensive Service Programs

The new agreement with Waters will enabled ISS Limited to further expand its portfolio of high quality chromatography instruments. ISS Limited already offer a wide range of services including PM/PQ maintenance contracts, consumables and spare parts for the chromatography market and the addition of the Waters range of HPLC instrumentation will create new opportunities for both the Waters and ISS Limited sales/service engineers.

Chromatography (HPLC, GC), Spectroscopy (UV/VIS), Mass Spectrometry and Dissolution Instruments

Sale of new and second user equipment Installation (IQ, OQ) Services

Preventative Maintenance (PM),
Service Contracts with Performance Qualification (PQ)

Consumables and Instrument Spare Parts Client Training Courses

To discuss your Service requirements in more detail please contact us:

12 Swan Business Park Sandpit Road, Dartford, Kent DA1 5ED United Kingdom

Tel: +44 (0)1322 285850 Fax: +44 (0)1322 285851 Email: info@iss-gb.co.uk Web: www.iss-gb.co.uk

We will be happy to arrange an on-site meeting to inspect all the equipment before issuing our proposals.

Table of Contents

Section 1: Petroleum Standards	9
Standards for ICP and RDE	0
Wear Metal Standards	0
Internal Standards	0
Metal Additives Standards	1
Matrix Oils and Solvents	1
V-Solv TM	2
Stabilizer for Wear Metal Standards	2
Single-Element Metallo-Organic Standards	
D-Series Multi-Element Wear Metal Standards	4
Standards for Used Oil Analysis	5
Acid Number and Base Number Standards19	5
Fuel Dilution Standards	6
Coolant Standards	6
Soot Content Standards	6
Crackle Test Reference Standards	7
Karl Fischer Titration Certified Reference Standards	7
Distillation Standards	7
Performance Testing Program18-19	9
Standards for S, N, Cl, and Metals	
Single-Element, Sulfur-Free Metallo-Organic Standards	0
Metallo-Organic Concentrates	1
Wear Metal Standards for XRF	2
Sulfur and Metals in Oil Standards	2
Lube Oil Standards	3
Standards for Sulfur in Diesel Fuel Analysis	4
Sulfur in Kerosene Standards	4
Sulfur in Isooctane Standards	5
Sulfur in Crude and Residual Oil Standards	5
Matrix Oils and Solvents	5
Polysulfide Oil Standards	
Sulfur in Petroleum Products (Ampoules)	
Sulfur & Nitrogen Products (Ampoules)	8
Chlorine in Oil Standards	8
Standards for Lead in Gasoline	9
Internal Standards for XRF Analysis	
Petroleum Physical Test Standards	0
Flash Point Reference Materials	0
Viscosity Reference Standards	
Pour Point, Cloud Point, and Freezing Point Reference Materials	
Cold Filter Plug Point Reference Materials	
Biodiesel	
Metals in Biodiesel Standards	
Sulfur in Biodiesel Standards	
Biodiesel/Diesel Fuel Blends	2
Section 2: Aqueous Standards 33	2
Section 2. Aqueous Standards	J
Single-Element Standards	4
A+ Single-Element Standards	
NIST High Performance ICP-AES Protocol	
Sample A+ Certificate of Analysis	
Speciation Standards40	
Isotopic Standards	
Atomic Absorption Standards	
Matrix Modifiers, Ionization Buffers and Releasing Agents	3

Section 2: Aqueous Standards (cont'd.)	33
Ion Chromatography and Wet Chemistry Standards	14
Anions	
Cations and Ammonia	
Eluents and Multi-Ion Standards	
Wet Chemistry Standards	1 7
QC Check Samples for Water Supply	
QC Check Samples for Water Pollution	
Multi-Element Standards for ICP-AES and ICP-MS	
Multi-Element Standards	51
General Use Environmental Standards52-5	53
Spiking Solutions	53
Water Pollution Standards	54
Synthetic Surface Water Certified Reference Material	54
QC Check Samples for Trace Metals	
International Environmental Standards	
EPA Method Standards Cross Reference Chart	
Second Source Standards Pair-Matched	
EPA Methods 200.7 & 6010A for ICP-AES	
EPA Methods 6010 & CLP for ICP-AES	
ICP-MS Tuning and Detector Optimization Solutions	
ICP-MS Internal Standard Stock Solutions	
EPA Method 200.8 for ICP-MS	
EPA Methods 6020 & CLP for ICP-MS	
Sample Multi-Element Certificate of Analysis	/2
Section 3: Solid Standards 7	'3
XRF Standards for RoHS	74
XRF Solid Standards for S & N	76
Binder and Briquetting Materials, Grinding Additives	
Borate Fusion Fluxes	
Soil Certified Reference Materials	30
	33
Autosampler Cups and Tubes	
ICP & ICP-MS Consumables	
Tubing for Peristaltic Pumps85-8	
Flaring Tool for Peri-Pump Tubing	
Mixing Tees for Sample Introduction	
Nebulizers	
Torches, Accessories & Spray-Chambers90-9	
ICP-MS Cones and Maintenance Kit94-9	
AA & GFAA Consumables	
GFAA Tubes & Parts	
Hydride and Mercury Cold Vapor Quartzware	
Hollow Cathode Lamps	
XRF Consumables	
XRF Sample Cups	
Thin Films for XRF Sample Cups	
Graphite Crucibles	/4
Reference Documents 10	5
Conversion Tables for Reference	
Wear Metal Set (WRMTLSET-17X50G) Addendum	
Custom Standard Quote Request Forms	
Product Index	
100 ocopes and Accreditations	14

VHG Tips

Metallo-organic standards should be kept away from moisture. Preferably store in a cool, dry location.

We welcome inquiries into custom metallo-organic standards. Please use the form at the end of the chapter.

Wear Metal Standards For ICP, RDE and Other Techniques

- VHG manufactures the highest quality metalloorganic mixes in the industry in our ISO 9001 and ISO Guide 34 facility. Customers are assured of getting the best value and consistency available.
- Each product must pass rigorous Quality Control in our ISO/IEC 17025 laboratory.
- Each product is accompanied by a comprehensive Certificate of Analysis with actual (not nominal) concentrations.

V21 Wear Metal Standards Ag, Al, B, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, Pb, Si, Sn, Ti, V, Zn combined in hydrocarbon oil		a, Cd, Cr, Cu, Fe, Mg, Mn, o, Si, Sn, Ti, V, Zn	V21+K Wear Metal Standards All of the elements included in V21 plus K	V23 Wear Metal Standards All of the elements included in V21 plus K and Sb	
Conc. (µg/g)	* Size (grams)	Product No.	Product No.	Product No.	
10	100	V21-10-100G	V21+K-10-100G	V23-10-100G	
	200	V21-10-200G	V21+K-10-200G	V23-10-200G	
30	100	V21-30-100G	V21+K-30-100G	V23-30-100G	
	200	V21-30-200G	V21+K-30-200G	V23-30-200G	
50	100	V21-50-100G	V21+K-50-100G	V23-50-100G	
	200	V21-50-200G	V21+K-50-200G	V23-50-200G	
100	100	V21-100-100G	V21+K-100-100G	V23-100-100G	
	200	V21-100-200G	V21+K-100-200G	V23-100-200G	
300	100	V21-300-100G	V21+K-300-100G	V23-300-100G	
	200	V21-300-200G	V21+K-300-200G	V23-300-200G	
500	100	V21-500-100G	V21+K-500-100G	V23-500-100G	
	200	V21-500-200G	V21+K-500-200G	V23-500-200G	
900	100	V21-900-100G	V21+K-900-100G	V23-900-100G	
	200	V21-900-200G	V21+K-900-200G	V23-900-200G	

^{*} For catalog purposes, nominal concentrations (µg/g) are provided.

NEW! Internal Standards For Wear Metal Analysis by ICP

The use of an internal standard, such as Co or Y, can significantly improve the accuracy of your results by correcting for wide variations in the viscosity or oil composition of your samples. Internal standards are easy to use when added to the diluent prior to sample preparation.

Element	Matrix	Concentration	Size (grams)	Product No.
Cobalt (Co)	Mineral Spirits	6 wt. %	100	OCO-6%IS-100G
Cobalt (Co)	Mineral Spirits	6 wt.%	200	OCO-6%IS-200G
Cobalt (Co)	Mineral Spirits	6 wt. %	400	OCO-6%IS-400G
Cobalt (Co)	Hydrocarbon Oil	5000µg/g	200	OCODN-5000-200G
Cobalt (Co)	Hydrocarbon Oil	5000µg/g	800	OCODN-5000-800G
Yttrium (Y)	Hydrocarbon Oil	5000µg/g	400	OY-5000-400G

Metal Additives Standards For ICP, RDE and Other Techniques

Metal Additives Standard MA3 Ca @ 5,000µg/g; P, Zn @ 1600µg/g combined in hydrocarbon oil*

Size (grams)	Product No.
100	MA3-100G
200	MA3-200G

Metal Additives Standard MA4 Ca @ 5,000µg/g; Mg, P, Zn @ 1600µg/g combined in hydrocarbon oil*

Size (grams)	Product No.
100	MA4-100G
200	MA4-200G

Metal Additives Standard MA5 Ba, Ca, Mg, P, Zn combined in hydrocarbon oil Conc.* Size Product No. (grams) $(\mu g/g)$ 900 100 MA5-900-100G 200 MA5-900-200G 1000 100 MA5-1000-100G 200 MA5-1000-200G 3000 100 MA5-3000-100G 200 MA5-3000-200G 100 MA5-5000-100G

MA5-5000-200G

^{*} For catalog purposes, nominal concentrations (µg/g) are provided

5000

Metal Additives St B, Ba, Ca, Mg, P, Zn o	candard MA6 combined in hydrocarbon oil		
Conc.* (µg/g)	Size (grams)	Product No.	
900	100 200	MA6-900-100G MA6-900-200G	

^{*} For catalog purposes, nominal concentrations (µg/g) are provided

Matrix Oils and Solvents

Solvents for the Preparation of Working Standards for Hydrocarbon/Petrochemical Analysis High-purity solvents supplied with a Certificate of Analysis that includes trace metal concentrations.

Item	Volume	Product No.
75 cSt Hydrocarbon Oil	500mL 1Gal.	OIL-75-500 OIL-75-1GAL
20 cSt Hydrocarbon Oil	500mL 1Gal.	OIL-20-500 OIL-20-1GAL
V-SOLV™ ICP Solvent	1 Gal. 4 X 1 Gal.	V-SOLV-1GAL V-SOLV-4GAL
Kerosene, low odor	500mL 1 Gal.	KERO-500 KERO-1GAL

Section 1 Petroleum Standards

ICP and RDE Standards

- ▶ Wear Metals
- ▶ Metal Additives V-Solv™ Single Elements D Series

Standards for Used Oils **Distillation Standards Performance Testing Program** Standards for S, N, CI

Petroleum Physical Test Standards

Biodiesel

and Metals

VHG Tips

The use of stabilizer is particularly important for long-term stability when diluting these standards in solvents.

V-Solv™

ICP Solvent

V-Solv[™] ICP Solvent is a proprietary solvent that is used for diluting oil and other organic liquids for analysis by ICP and ICP-MS. Use V-Solv[™] as a matrix blank and as a diluent for your calibration standards and samples for outstanding nebulization characteristics. V-Solv[™] ICP Solvent offers the following advantages over conventional low odor/odorless kerosene, xylene and other commercial solvents:

- Very high purity (essentially no trace metals or sulfur) - each bottle is accompanied by a COA that states the trace impurity levels of 36 metals and sulfur.
- Makes very stable dilutions of metalloorganic standards and oil samples.
- Extremely low odor (no kerosene or aromatic smell), which results in a comfortable work environment and is also VOC-exempt for consumer products applications (EPA Title 40, Volume 5, Parts 53-59).
- Extremely low toxicity compared with kerosene or xylene.
- Very competitively priced and non-hazardous to ship (flashpoint of 260°F).
- One gallon bottle size for ease of use and for shipment via common carrier.

ICP Solvent for the Preparation of Working Standards for Hydrocarbon/Petrochemical Analysis

High-purity solvents supplied with a Certificate of Analysis that includes trace metal concentrations.

Item	Volume	Product No.
V-SOLV™ ICP Solvent	1 Gal. 4 X 1 Gal.	V-SOLV-1GAL V-SOLV-4GAL

Stabilizer for Wear Metal Standards

Stabilizer to Improve Stability of Mixes or Dilutions

Solvent stabilizer can improve stability of mixes or dilutions of VHG's 1000µg/g and 5000µg/g stock metallo-organic standards, as well as multi-element mixes after dilution in solvent.

Product	Product Use	Product No.	Size (grams)
MO Stabilizer	VHG's wear metal standards. Add to solutions at 0.6wt%	STAB-50G	50

Single-Element Metallo-Organic Standards For ICP, RDE and Other Techniques

- ◆ Metallo-organic compounds* in hydrocarbon oil
- ◆ Accuracy ensured by Quality Testing with NIST Standard Reference Materials when available
- ◆ Certificate of Analysis supplied with each standard
- Certificate of Analysis includes trace metal concentrations confirmed with ICP-AES scans
- Stocked for prompt shipment

Single-Element in Hydrocarbon oil	Concentr (1,000µ		Concentr (5,000 µ ։	*** *
Element	Product No.	Size	Product No.	Size
Aluminum Al	OAL-1000-50G	50g	OAL-5000-	50g
Antimony Sb	OSB-1000-50G	50g	OSB-5000-50G	50g
Arsenic As	OAS-1000-50G	50g	N/A	
Barium Ba	OBA-1000-50G	50g	OBA-5000-50G	50g
Beryllium Be	OBE-1000-50G	50g	N/A	
Bismuth Bi	OBI-1000-50G	50g	N/A	
Boron B	OB-1000-50G	50g	OB-5000-50G	50g
Cadmium Cd	OCD-1000-50G	50g	OCD-5000-50G	50g
Calcium Ca	OCA-1000-50G	50g	OCA-5000-50G	50g
Chromium Cr	OCR-1000-50G	50g	OCR-5000-50G	50g
Cobalt Co	OCO-1000-50G	50g	OCO-5000-50G	50g
Copper Cu	OCU-1000-50G	50g	OCU-5000-50G	50g
Iron Fe	OFE-1000-50G	50g	OFE-5000-50G	50g
Lanthanum La	OLA-1000-50G	50g	N/A	
Lead Pb	OPB-1000-50G	50g	OPB-5000-50G	50g
Lithium Li	OLI-1000-50G	50g	OLI-5000-50G	50g
Magnesium Mg	OMG-1000-50G	50g	OMG-5000-50	50g
Manganese Mn	OMN-1000-50G	50g	OMN-5000-50	50g
Mercury Hg	OHG-1000-50G	50g	N/A	
Molybdenum Mo	OMO-1000-50G	50g	OMO-5000-50G	50g
Nickel Ni	ONI-1000-50G	50g	ONI-5000-50G	50g
Phosphorus P	OP-1000-50G	50g	OP-5000-50G	50g
Potassium K	OK-1000-50G	50g	OK-5000-50G	50g
Scandium Sc	OSC-1000-50G	50g	N/A	
Selenium Se	OSE-1000-50G	50g	N/A	
Silicon Si	OSI-1000-50G	50g	OSI-5000-50G	50g
Silver Ag	OAG-1000-50G	50g	OAG-5000-50G	50g
Sodium Na	ONA-1000-50G	50g	ONA-5000-50G	50g
Strontium Sr	OSR-1000-50G	50g	N/A	
Sulfur S	OS-1000-50G	50g	OS-5000-50G	50g
Thallium TI	OTL-1000-50G	50g	N/A	
Tin Sn	OSN-1000-50G	50g	OSN-5000-50G	50g
Titanium Ti	OTI-1000-50G	50g	OTI-5000-50G	50g
Vanadium V	OV-1000-50G	50g	OV-5000-50G	50g
Yttrium Y	OY-1000-50G	50g	OY-5000-50G	50g
Zinc Zn	OZN-1000-50G	50g	OZN-5000-50G	50g
Zirconium Zr	OZR-1000-50G	50g	OZR-5000-50G	50g

^{*} Many of these compounds are sulfonate-based, and thus, contain high levels of sulfur. If absence of sulfur is important for your application, please use VHG's line of sulfur-free standards on Page 20.

Section 1 Petroleum Standards

ICP & RDE Standards

Wear Metals Metal Additives

► V-SolvTM

Biodiesel

Single ElementsD Series

Standards for Used Oils Distillation Standards Performance Testing Program Standards for S, N, CI and Metals Petroleum Physical Test Standards

D-Series Multi-Element Wear Metal Standards For Military Applications Using RDE

- ◆ VHG Labs has supplied single-element concentrated standards to the Joint Oil Analysis Program Technical Support Center (JOAP-TSC) for making D-Series standards (D3, D12, D19) for almost a decade. Now D-Series standards are available directly from VHG.
- ◆ VHG D-Series standards are made in our ISO 9001 and ISO Guide 34 facility.
- ◆ Each product must pass rigorous quality control in our ISO/IEC 17025 laboratory.
- All VHG standards are accompanied by a comprehensive Certificate of Analysis.
- ♦ VHG D-Series standards are supplied with a convenient squirt cap.

D3 Standards B, Mo, Zn in Aviation Reference Oil			
Conc. (µg/g)	Size (grams)	Equivalent DOD NSN	VHG Product No.
0	200	9150-00-179-5137	D19-0-200G
100	200	9150-01-283-0249	D3-100-200G

D12 Standards Ag, Al, Cr, Cu, Fe, Mg, Na, Ni, Pb, Si, Sn, Ti in Aviation Reference Oil				
Conc. (µg/g)	Size (grams)	Equivalent DOD NSN	VHG Product No.	
0	200	9150-00-179-5137	D19-0-200G	
5	200	9150-01-307-3343	D12-5-200G	
10	200	9150-00-179-5145	D12-10-200G	
30	200	9150-00-179-5144	D12-30-200G	
50	200	9150-00-179-5143	D12-50-200G	
100	200	9150-00-179-5142	D12-100-200G	
300	200	9150-00-179-5141	D12-300-200G	
500	200		D12-500-200G	
700	200		D12-700-200G	
900	200		D12-900-200G	

D19 Standa		. Mn. Mo. Na. Ni. Pb. Si. Sn. Ti.	V, Zn in Aviation Reference Oil
Conc. (µg/g)	Size (grams)	Equivalent DOD NSN	VHG Product No.
0	100	9150-00-179-5137	D19-0-100G
5	100		D19-5-100G
10	100		D19-10-100G
30	100		D19-30-100G
50	100		D19-50-100G
100	100		D19-100-100G
300	100		D19-300-100G
500	100		D19-500-100G
700	100		D19-700-100G
900	100		D19-900-100G
Set*	16x100	9150-01-355-1178	D19-SET-16X100G
OCI	102100	3130-01-333-1170	D13 6E1-10X1000

^{*} D19-SET includes 4xD19-0-100G, 1xD19-5-100G, 1xD19-10-100G, 1xD19-30-100G, 1xD19-50-100G, 3xD19-100-100G, 2xD19-300-100G, 1xD19-500-100G, 1xD19-700-100G, and 1xD19-900-100G.

Special sizes, concentrations, and blends available upon request.

Acid Number and Base Number Standards

Acid Number (AN) Reference Materials

VHG Labs' AN Reference materials are intended for use in the determination of Acid Number (AN) in petroleum products in accordance with ASTM D664/IP 177 (by potentiometric titration) or ASTM D974 (by color-indicator titration). Each standard is supplied with a full Certificate of Analysis (COA) which states the certified values and uncertainty by both ASTM D664 and D974.

Matrix	Nominal Value (mg KOH/g)*	Size (grams)	Product Number
Hydrocarbon Oil	0.1	100	AN-0.1-100G
Hydrocarbon Oil	0.5	100	AN-0.5-100G
Hydrocarbon Oil	1.0	100	AN-1-100G
Hydrocarbon Oil	1.5	100	AN-1.5-100G
Hydrocarbon Oil	2.0	50	AN-2-50G
Hydrocarbon Oil	3.0	50	AN-3-50G

^{*}Acid number is defined as the quantity of base, expressed as milligrams (mg) of potassium hydroxide (KOH) per gram of sample, required to titrate a sample in a specific solvent to a specified end point.

Base Number (BN) Reference Materials

VHG Labs' BN Reference Materials are intended for use in the determination of Base Number (BN) in petroleum products in accordance with ASTM D2896/IP 276 (by potentiometric perchloric acid titration) or ASTM D4739 (by potentiometric titration). Each standard is supplied with a full Certificate of Analysis (COA) which states the certified values and uncertainty by both ASTM D2896 and D4739.

Matrix	Nominal Value (mg KOH/g)*	Size (grams)	Product No.
Hydrocarbon Oil	6	50	BN-6-50G
Hydrocarbon Oil	10	50	BN-10-50G
Hydrocarbon Oil	15	50	BN-15-50G
Hydrocarbon Oil	30	50	BN-30-50G
Hydrocarbon Oil	40	50	BN-40-50G
Hydrocarbon Oil	70	50	BN-70-50G

*Base number is defined as the quantity of acid, expressed as milligrams (mg) of potassium hydroxide (KOH) per gram of sample, required to titrate a sample in a specified solvent to a specified end point.

Section 1 Petroleum Standards

ICP & RDE Standards

Wear Metals Metal Additives V-Solv[™] Single Elements

D Series

Standards for Used Oils ► AN & BN Standards Fuel Dilution Coolant in Oil Soot Crackle

Karl Fischer
Distillation Standards
Performance Testing
Program

Standards for S, N, Cl and Metals

Petroleum Physical Test Standards

Biodiesel

VHG Tip

Fuels for the fuel dilution standards are devolatilized by removing 10% of the lights using a rotovap.

Fuel Dilution Standards

These standards are intended for use in the determination of fuel (diesel fuel or gasoline) in used engine oils by GC, IR, fuel dilution meter (fuel sniffer), or flash point analyzer. They are prepared gravimetrically from well-characterized fuels and hydrocarbon oils, and are verified by CG-FID in accordance with ASTM Method D3524 or D3525. Volume: 100mL

Description	Product No.
Blank for Diesel Fuel Dilution Standards	DSLFD-BLK-100
2% (v/v) Devolatilized Diesel Fuel in hydrocarbon oil	DSLFD-2%-100
5% (v/v) Devolatilized Diesel Fuel in hydrocarbon oil	DSLFD-5%-100
10% (v/v) Devolatilized Diesel Fuel in hydrocarbon oil	DSLFD-10%-100
Blank for Gas Fuel Dilution Standards	GASFD-BLK-100
2% (v/v) Devolatilized Gasoline in hydrocarbon oil	GASFD-2%-100
5% (v/v) Devolatilized Gasoline in hydrocarbon oil	GASFD-5%-100
10% (v/v) Devolatilized Gasoline in hydrocarbon oil	GASFD-10%-100

NEW! Coolant Standards

Engine Coolant in Oil Standards

VHG Labs' Engine Coolant in Oil Standards are intended for use in the determination of coolant (ethylene glycol or propylene glycol) in used motor oil by GC or IR. They are prepared from high purity glycols in high purity 20 cSt hydrocarbon oil and verified by GC-head space analyzer. Volume: 100mL

Analyte	Concentration (µg/g)	Product No.
Blank	0	GLY-BLK-100
Ethylene Glycol & Propylene Glycol	100 100	GLY-100-100
Ethylene Glycol & Propylene Glycol	500 500	GLY-500-100
Ethylene Glycol & Propylene Glycol	1000 1000	GLY-1000-100

Soot Content Standards

Reference standards for use in the determination of soot content in 15W40 diesel motor oil by infrared spectroscopy or other techniques. All values certifed by thermogravimetric analysis (TGA).

Volume (mL)	Product No.
50	SOOT-BLK-50
50	SOOT-A-50
50	SOOT-B-50
50	SOOT-C-50
50	SOOT-D-50
50	SOOT-E-50
6 x 50	SOOT-SET
	50 50 50 50 50 50

Crackle Test Reference Standards

"Crackle Test" reference standards for determining water in oil (all values nominal). The crackle test is a visual test performed by placing a small drop of oil onto a hot plate (usually around 300° F). The amount of water present in oil samples is estimated by comparison to these standards. All values certified by gravimetric preparation.

Nominal Water Concentration (%)	Volume (mL)	Product No.
Blank	100	CT-BLK-100
0.1	100	CT-0.1%-100
0.5	100	CT-0.5%-100
1.0	100	CT-1.0%-100

Karl Fischer Titration Certified Reference Standards

Karl Fischer Titration certified reference standards for determining water in motor oil (all values certified by Karl Fischer Titration). This test determines the amount of water present in the oil and is the most commonly-used test for this type of determination, with a high degree of accuracy. For use with ASTM D6304.

Nominal Water Concentration (%)	Volume (mL)	Product No.
Blank	100	KF-BLK-100
0.1	100	KF-0.1%-100
0.5	100	KF-0.5%-100
1.0	100	KF-1.0%-100

Distillation Standards

ASTM D86 Group 1 & 2 Synthetic Distillation Standard

VHG Labs' Group 1 & 2 Distillation Standard is intended for use in accordance with ASTM Method D86 Distillation Groups 1 & 2 and ASTM D850, for distillation of petroleum products at atmospheric pressure. This standard is a synthetic blend of hydrocarbons that boil in the temperature range specified in ASTM D86 Distillation Groups 1 & 2. It covers the boiling range 129°F to 368°F (54°C to 187°C), and was verified by consensus analysis. **Volume:** 500mL

Description	Product No.
Synthetic Distillation Standard	D86-500

ASTM D86 Group 4 Distillation Standard

VHG Labs' Group 4 Distillation Standard is intended for use in accordance with ASTM Method D86 Distillation Group 4 for distillation of petroleum products at atmospheric pressure. This standard is a diesel oil whose distillation range is specified in ASTM D86 Distillation Group 4. It covers the boiling range 379° F to 700° F (193° to 371° C) and was verified by consensus analysis. **Volume:** 500mL

Description	Product No.
Distillation Standard	D86-4-500

Section 1 Petroleum Standards

ICP & RDE Standards Standards for Used Oils AN & BN Standards

- ► Fuel Dilution
- ► Coolant in Oil
- ► Soot
- ► Crackle
- ► Karl Fischer

Distillation Standards

Performance Testing Program

Standards for S, N, Cl and Metals

Petroleum Physical Test Standards

Biodiesel

Performance Testing Program

The only program of its kind!

Provides an instant response to submitted values

VHG Labs' Performance Testing Program (PTP) was specially designed to give analytical laboratories instant validation while measuring metals, sulfur, viscosity, and particle count in new or used oils. The PTP provides participating labs with a superior method of monitoring their analytical performance as measured against Certified Reference Materials (CRM's) in three quick and easy steps.

Web-based, Accurate, Immediate Results

Don't be bogged down with out-dated "round-robin" programs that require months to return results. VHG Labs has taken Performance Testing to a new level by developing a world-class, interactive, web-

Symbol	Element	Analytical Results ug/g	Certified Values	Difference	% Diff
Al	aluminum	14.000	15	-1.00	6.67%
Ва	barium	-	1000	0.00	0.00%
В	boron	-	100	0.00	0.00%
Ca	calcium	3111.000	3000	111.00	3.70%
Cr	chromium	3.000	3	0.00	0.00%
Cu	copper	29.000	28	1.00	3.57%
Fe	iron	498.000	500	-2.00	0.40%
Pb	lead	11.500	10	1.00	15.00%
Mg	magnesium	264.000	250	14.00	5.60%
Mn	manganese	6	5	0.00	20.00%
Мо	molybdenum	29.000	30	-1.00	3.33%
Ni	nickel	5.000	5	0.00	0.00%
Р	phosphorus	1048.000	1000	48.00	4.80%
К	potassium	26.000	25	1.00	4.00%
Si	silicon	28.000	30	-2.00	6.67%
Ag	silver	-	30	0.00	0.00%
Na	sodium	42.000	40	2.00	5.00%
Sn	tin	3.000	5	-2.00	40.00%
П	titanium	-	5	0.00	0.00%
V	vanadium	6	5	0.00	20.00%
Zn	zinc	1069.000	1000	69.00	6.90%
К	potassium	26.000	25	1.00	4.00%
v	vanadium		5	0.00	0.00%

based product for checking the accuracy of your results immediately. It's the only testing program of its kind to provide an instantaneous response to submitted values. Due to its popularity among testing labs, our PTP program has recently been expanded to include the analysis of lead in isooctane, metals in lube oil or biodiesel, and sulfur in various matrices.

How Does It Work?

- 1) Analyze the PTP Sample
- 2) Enter results on PTP Website
- 3) Check your accuracy

RECEIVE ACCURATE, IMMEDIATE RESULTS!

Performance Testing Program

VHG Performance Testing Program Each sample includes a single use log-in code with a 90-day expiration.						
Name	Description	Product No.				
Sample for Elemental Analysis of Oils by ICP, RDE or other techniques	Elements: Ag, Al, B, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Si, Sn, Ti, V, Zn, 25g.	VPTPMO-25G				
Sample for Viscosity Analysis	Viscosity Test Standard: 40°C and 100°C, 50mL.	VPTPVISC-50				
Sample for Particle Count Analysis (For ISO 11171 only)	Particle Count Standard: 4µm, 6µm, 8µm, 14µm, 21µm, 38µm, 50µm and 70µm ranges, 125mL.	VPTPPC-125				
Set: VPTPMO-25G, VPTPVISC-50, and VPTPPC-125	Elemental Analysis Test Standard: 25 grams, Viscosity Test Standard: 50mL and Particle Count Standard, 125mL.	VPTPSET1				

Additions to the VHG Performance Testing Program	
Forth controls in cludes a circular use less in code with a 00 developmention	

Name	Description	Product No.
Sample for Elemental Analysis of Lube Oil by XRF or other techniques	Elements: Ba, Ca, Cl, Mg, Mo, P S, Si, Zn, 25mL.	PTPLUBEMO-25
Sample for Elemental Analysis of B100 Biodiesel	Elements: Ca, K, Mg, Na, P 25g.	PTPB100M5-25G
Sample for Lead in Isooctane Analysis	Element: Pb, 25g	PTPPBISO-25G
Sample for Sulfur in #2 Diesel Fuel Analysis	Element: S, 25mL	PTPSDSL-25
Sample for Sulfur in 20 cSt Mineral Oil Analysis	Element: S, 25mL	PTPS20M-25
Sample for Sulfur in Isooctane Analysis	Element: S, 25mL	PTPSISO-25
Sample for Sulfur in B100 Biodiesel Analysis	Element: S, 25mL	PTPSB100-25
Sample for Sulfur in Crude Oil Analysis	Element: S, 25mL	PTPSCRD-25

Section 1 Petroleum Standards

ICP & RDE Standards
Standards for Used Oils
Distillation Standards
Performance Testing
Program
Standards for S, N, Cl
and Metals
Petroleum Physical Test
Standards
Biodiesel

VHG Tip

Many commercial metalloorganic standards have matrices of sulfur-containing compounds. Use VHG's unique sulfur-free standards if the absence of S is important for your application. Alternatively, known amounts of S can be blended intentionally.

For multi-element XRF analysis, the element concentrations should be spread randomly across the suite of standards in order to best correct for interelement effects.

Single-Element, Sulfur-Free Metallo-Organic Standards For XRF and Other Techniques

- Sulfur-free metallo-organic compounds in hydrocarbon oil
- ◆ Certificate of Analysis supplied with each standard
- ◆ Accuracy ensured by Quality Testing with NIST Standard Reference Materials when available
- ◆ Certificate of Analysis includes trace metal concentrations

Sulfur-Free Single Element in Oil	Concentration (1,000µg/g)		Concentration (5,000µg/g)	
Element	Product No.	Size	Product No.	Size
Aluminum Al	OSF-AL-1000-50G	50g	OSF-AL-5000-50G	50g
Antimony Sb	OSF-SB-1000-50G	50g	OSF-SB-5000-50G	50g
Arsenic As	OSF-AS-1000-50G	50g	N/A	
Barium Ba	OSF-BA-1000-50G	50g	OSF-BA-5000-50G	50g
Beryllium Be	OSF-BE-1000-50G	50g	OSF-BE-5000-50G	50g
Bismuth Bi	OSF-BI-1000-50G	50g	OSF-BI-5000-50G	50g
Boron B	OSF-B-1000-50G	50g	OSF-B-5000-50G	50g
Cadmium Cd	OSF-CD-1000-50G	50g	OSF-CD-5000-50G	50g
Calcium Ca	OSF-CA-1000-50G	50g	OSF-CA-5000-50G	50g
Cerium Ce	OSF-CE-1000-50G	50g	OSF-CE-5000-50G	50g
Chromium Cr	OSF-CR-1000-50G	50g	OSF-CR-5000-50G	50g
Cobalt Co	OSF-CO-1000-50G	50g	OSF-CO-5000-50G	50g
Copper Cu	OSF-CU-1000-50G	50g	OSF-CU-5000-50G	50g
Gallium Ga	OSF-GA-1000-50G	50g	OSF-GA-5000-50G	50g
Gold Au	OSF-AU-1000-50G	50g	N/A	
Iron Fe	OSF-FE-1000-50G	50g	OSF-FE-5000-50G	50g
Lead Pb	OSF-PB-1000-50G	50g	OSF-PB-5000-50G	50g
Lithium Li	OSF-LI-1000-50G	50g	OSF-LI-5000-50G	50g
Magnesium Mg	OSF-MG-1000-50	50g	OSF-MG-5000-50G	50g
Manganese Mn	OSF-MN-1000-50G	50g	OSF-MN-5000-50G	50g
Mercury Hg	OSF-HG-1000-50G	50g	N/A	
Molybdenum Mo	OSF-MO-1000-50G	50g	OSF-MO-5000-50G	50g
Nickel Ni	OSF-NI-1000-50G	50g	OSF-NI-5000-50G	50g
Phosphorus P	OSF-P-1000-50G	50g	OSF-P-5000-50G	50g
Potassium K	OSF-K-1000-50G	50g	OSF-K-5000-50G	50g
Selenium Se	OSF-SE-1000-50G	50g	N/A	
Silicon Si	OSF-SI-1000-50G	50g	OSF-SI-5000-50G	50g
Silver Ag	OSF-AG-1000-50G	50g	OSF-AG-5000-50G	50g
Sodium Na	OSF-NA-1000-50G	50g	OSF-NA-5000-50G	50g
Strontium Sr	OSF-SR-1000-50G	50g	OSF-SR-5000-50G	50g
Thallium TI	OSF-TL-1000-50G	50g	N/A	
Tin Sn	OSF-SN-1000-50G	50g	OSF-SN-5000-50G	50g
Titanium Ti	OSF-TI-1000-50G	50g	OSF-TI-5000-50G	50g
Vanadium V	OSF-V-1000-50G	50g	OSF-V-5000-50G	50g
Yttrium Y			N1/A	
i tuiuiii i	OSF-Y-1000-50G	50g	N/A	
Zinc Zn	OSF-Y-1000-50G OSF-ZN-1000-50G	50g 50g	N/A OSF-ZN-5000-50G	50g

Metallo-Organic Concentrates Sulfur-Free Matrix: Excellent for XRF

Metallo-Organic Concentrates - Single Element

These sulfur-free, metallo-organic concentrates are ideal for X-ray fluorescence (XRF). They can be used to prepare single or multi-element standards, individually or as a set. Sulfur can be added for the simultaneous analysis of sulfur and metals. Each product is accompanied by a Certificate of Analysis that documents the assayed concentration and any trace impurities.

Element	Nominal Conc.	Product No.	Size	Product No.	Size
Aluminum Al	3%	ROSFAL3-25G	25G	ROSFAL3-100	100g
Antimony Sb	2%	ROSFSB2-25G	25G	ROSFSB2-100G	100g
Barium Ba	7%	ROSFBA7-25G	25G	ROSFBA7-100G	100g
Bismuth Bi	28%	ROSFBI28-25G	25G	ROSFBI28-100G	100g
Boron B	3%	ROSFB3-25G	25G	ROSFB3-100G	100g
Cadmium Cd	10%	ROSFCD10-25G	25G	ROSFCD10-100G	100g
Calcium Ca	2%	ROSFCA2-25G	25G	ROSFCA2-100G	100g
Cerium Ce	12%	ROSFCE12-25G	25G	ROSFCE12-100G	100g
Chromium Cr	9%	ROSFCR9-25G	25G	ROSFCR9-100G	100g
Cobalt Co	8%	ROSFCO8-25G	25G	ROSFCO8-100G	100g
Copper Cu	3%	ROSFCU3-25G	25G	ROSFCU3-100G	100g
Iron Fe	6%	ROSFFE6-25G	25G	ROSFFE6-100G	100g
Lead Pb	10%	ROSFPB10-25G	25G	ROSFPB10-100G	100g
Lithium Li	2%	ROSFLI2-25G	25G	ROSFLI2-100G	100g
Magnesium Mg	2%	ROSFMG2-25G	25G	ROSFMG2-100G	100g
Manganese Mn	6%	ROSFMN6-25G	25G	ROSFMN6-100G	100g
Molybdenum Mo	15%	ROSFMO15-25G	25G	ROSFMO15-100G	100g
Nickel Ni	8%	ROSFNI8-25G	25G	ROSFNI8-100G	100g
Phosphorus P	11%	ROSFP11-25G	25G	ROSFP11-100G	100g
Potassium K	4%	ROSFK4-25G	25G	ROSFK4-100G	100g
Praseodymium Pr	3%	ROSFPR3-25G	25G	ROSFPR3-100G	100g
Silicon Si	18%	ROSFSI18-25G	25G	ROSFSI18-100G	100g
Silver Ag	1%	ROSFAG1-25G	25G	ROSFAG1-100G	100g
Sodium Na	3%	ROSFNA3-25G	25G	ROSFNA3-100G	100g
Strontium Sr	9%	ROSFSR9-25G	25G	ROSFSR9-100G	100g
Thallium TI	3%	ROSFTL3-25G	25G	ROSFTL3-100G	100g
Tin Sn	18%	ROSFSN18-25G	25G	ROSFSN18-100G	100g
Titanium Ti	7%	ROSFTI7-25G	25G	ROSFTI7-100G	100g
Vanadium V	4%	ROSFV4-25G	25G	ROSFV4-100G	100g
Yttrium Y	2%	ROSFY2-25G	25G	ROSFY2-100G	100g
Zinc Zn	18%	ROSFZN18-25G	25G	ROSFZN18-100G	100g
Zirconium Zr	24%	ROSFZR24-25G	25G	ROSFZR24-100G	100g

Stabilizer for Sulfur-Free Standard Preparation

Solvent stabilizer can improve stability of mixes or dilutions of VHG's 1000μg/g and 5000μg/g stock metallo-organic standards or concentrates, as well as multi-element mixes.

Product	Product Use	Product No.	Size (grams)
MOSF Stabilizer	VHG's sulfur-free metallo-organics. Add to solutions at 15-30% v/v	SF-STAB-100G	100

Section 1 Petroleum Standards

ICP & RDE Standards
Standards for Used Oils
Distillation Standards
Performance Testing
Program
Standards for S, N, CI
and Metals

- ► Sulfur-Free Metallo-Organics
- ► Metallo-Organic Concentrates Sulfur & Metals for XRF Sulfur Nitrogen Chlorine Lead in Gas

Petroleum Physical Test Standards Biodiesel

Wear Metal Calibration Set

Set of 17 standards with concentrations randomly arranged across the set to correct for inter-element effects. See appendix on Page 106 for exact concentrations. Suitable for ASTM D4927.

Matriv:	Hydrocar	hon Oil	Siza.	50g each
IVIALITX.	nvuiocai	DON OIL	OIZE.	oud each

Element	Concentration Range (µg/g)
Ag	0-500
Al	0-500
Ва	0-2000
Ca	0-5000
Cd	0-500
Cr	0-500
Cu	0-500
Fe	0-500
K	0-500
Mg	0-3000
Mn	0-500
Mo	0-500
Na	0-500
Ni	0-500
P	0-2000
Pb	0-500
Sb	0-500
Si	0-500
Sn	0-500
Ti	0-500
V	0-500
Zn	0-2000
Product No. WRMTLSET-17X50G	

Elemental concentrations are randomly arranged across the set to correct for interelement effects. Standards in the set are not available for individual sale. See appendix on Page 106 for exact concentrations.

Sulfur and Metals in Oil Standards For XRF

Sulfur and Metals in Oil

Suitable for ASTM D5708

For S and metals in crude and residual oils Matrix: 20cSt. Mineral Oil Volume: 100mL

Elemental Concentrations

Sulfur wt%	Iron μg/g	Nickel μg/g	Vanadium μg/g	Product No.
0.0	0	0	0	SMOIL1-100
2.5	400	100	250	SMOIL2-100
0.5	300	10	500	SMOIL3-100
1.0	0	80	350	SMOIL4-100
4.5	250	60	100	SMOIL5-100
4.0	350	30	200	SMOIL6-100
3.5	200	50	0	SMOIL7-100
5.5	50	40	400	SMOIL8-100
2.0	450	20	300	SMOIL9-100
1.5	500	5	150	SMOIL10-100
3.0	150	70	25	SMOIL11-100
5.0	100	0	50	SMOIL12-100

Product No. SMOILSET-12X100

Lube Oil Standards For XRF

Lubricating Oil Standards Suitable for ASTM D4927, D6481, D

Suitable for ASTM D4927, D6481, D6443 Matrix: Lubricating Oil **Volume: 100mL**

Elemental Concentrations								
Sulfur wt%	Calcium wt%	Phosphorus wt%	Zinc wt%	Product No.				
0.000	0.000	0.000	0.000	LOIL1-100				
0.050	0.600	0.005	0.080	LOIL2-100				
0.300	0.000	0.020	0.175	LOIL3-100				
0.150	0.500	0.030	0.070	LOIL4-100				
0.100	0.300	0.060	0.130	LOIL5-100				
0.175	0.400	0.200	0.050	LOIL6-100				
0.075	0.200	0.080	0.120	LOIL7-100				
0.125	0.250	0.050	0.000	LOIL8-100				
0.400	0.350	0.040	0.110	LOIL9-100				
0.500	0.075	0.225	0.150	LOIL10-100				
0.200	0.050	0.150	0.200	LOIL11-100				
0.550	0.005	0.000	0.140	LOIL12-100				
0.450	0.100	0.010	0.250	LOIL13-100				
0.600	0.010	0.125	0.060	LOIL14-100				
0.250	0.150	0.100	0.090	LOIL15-100				
0.350	0.025	0.175	0.100	LOIL16-100				

Product No. LOILSET-16X100

NEW!

Lube C	il Calibrati	on Set						
Suitable	e for ASTM	D4927						
Matrix:	Lubricating	Oil Volum e	e: 50mL					
Elemen	tal Concentr	ations (µg/g)						
Ва	Ca	CI	Mg	Мо	Р	S	Si	Zn
10	10	1000	400	250	2000	5000	400	50
200	5000	0	350	100	11	10000	380	250
30	0	400	100	0	1750	0	25	750
0	4500	2000	0	200	1500	500	340	1250
50	0	200	300	250	20	1250	0	1750
30	0	1800	0	30	100	500	0	2250
100	3500	0	250	150	1	12500	300	10
140	20	10	800	0	1250	0	450	20
300	3000	60	120	500	3	0	210	0
0	2000	1600	20	300	1000	15000	400	50
0	2500	10	50	20	1750	22500	225	0
180	500	100	0	10	0	17500	220	100
400	2000	600	30	150	750	0	180	0
220	2	800	0	50	0	10000	140	2
340	1500	100	2	0	10	1250	100	1200
260	4000	4	700	0	500	0	250	120
0	1000	1800	0	350	50	20000	25	2500
380	500	2	400	5	250	0	10	2000
300	50	1000	0	400	2250	2500	0	1500
0	250	1000	500	0	1250	17500	0	1000
0	100	1200	600	0	2500	25000	0	500
340	1	1400	10	450	10	22500	0	125
0	0	0	0	0	0	0	0	0

Product No. LUBESET-23X50

Elemental concentrations are randomly arranged across the set to correct for interelement effects.

Section 1 Petroleum Standards

ICP & RDE Standards Standards for Used Oils Distillation Standards Performance Testing Program

Standards for S, N, Cl and Metals

Sulfur-Free Metallo-Organics Metallo-Organic Concentrates

➤ Sulfur & Metals for XRF Sulfur Nitrogen Chlorine Lead in Gas

Petroleum Physical Test Standards Biodiesel

VHG Tips

Matrix oil blanks are necessary for most analytical techniques of petroleum products. VHG Labs provides a wide range of clean, pure blanks designed to get the most from your analysis.

Sulfur Standards in Petroleum Products

- ◆ NEW! Wider range of products for product for ULSD analysis
- Standards are manufactured in accordance with applicable ASTM methods in VHG Labs' ISO 9001 and ISO Guide 34 facility
- ◆ Certificate of Analysis provided from our ISO/IEC 17025 laboratory showing NIST traceability of standard
- "Blank" standards include ppb-level sulfur concentration on Certificate of Analysis

Standards for Sulfur in Diesel Fuel Analysis

Full-range of Sulfur Standards for XRF. ASTM Methods D2622, D4294, D5453, D7039, D7212, D7220 and others.

Matrix: S	ee Below	Volume: 100mL		
Concen (µg/g)	tration (wt%)	Light Mineral Oil Product No.	Heavy Mineral Oil Product No.	#2 Diesel Fuel Product No.
Blank	Blank	S20MIN-BLK-100	SMIN-BLK-100	SDSL-BLK-100
5	0.0005	S20MIN-5-100	SMIN-5-100	SDSL-5-100
10	0.0010	S20MIN-10-100	SMIN-10-100	SDSL-10-100
15	0.0015	S20MIN-15-100	SMIN-15-100	SDSL-15-100
20	0.0020	S20MIN-20-100	SMIN-20-100	SDSL-20-100
25	0.0025	S20MIN-25-100	SMIN-25-100	SDSL-25-100
50	0.0050	S20MIN-50-100	SMIN-50-100	SDSL-50-100
75	0.0075	S20MIN-75-100	SMIN-75-100	SDSL-75-100
100	0.0100	S20MIN-100-100	SMIN-100-100	SDSL-100-100
200	0.0200	S20MIN-200-100	SMIN-200-100	SDSL-200-100
300	0.0300	S20MIN-300-100	SMIN-300-100	SDSL-300-100
400	0.0400	S20MIN-400-100	SMIN-400-100	SDSL-400-100
500	0.0500	S20MIN-500-100	SMIN-500-100	SDSL-500-100
750	0.0750	S20MIN-750-100	SMIN-750-100	SDSL-750-100
1000	0.100	S20MIN-1000-100	SMIN-1000-100	SDSL-1000-100
1500	0.150	S20MIN-1500-100	SMIN-1500-100	SDSL-1500-100
3000	0.300	S20MIN-3000-100	SMIN-3000-100	SDSL-3000-100
5000	0.500	S20MIN-5000-100	SMIN-5000-100	SDSL-5000-100
7500	0.750	S20MIN-7500-100	SMIN-7500-100	SDSL-7500-100
10,000	1.00	S20MIN-1%-100	SMIN-1%-100	SDSL-1%-100
20,000	2.00	S20MIN-2%-100	SMIN-2%-100	SDSL-2%-100
30,000	3.00	S20MIN-3%-100	SMIN-3%-100	SDSL-3%-100
40,000	4.00	S20MIN-4%-100	SMIN-4%-100	SDSL-4%-100
50,000	5.00	S20MIN-5%-100	SMIN-5%-100	SDSL-5%-100

Sulfur in Kerosene Standards

VHG's Sulfur in Kerosene Standards are suitable for use with ASTM D2622, D3120, D4045, D4294, D5453, and others.

volume: 100mL			
Concer (µg/g)	ntration (wt%)	Product No.	
Blank	Blank	SKERO-BLK-100	
10	0.0010	SKERO-10-100	
50	0.0050	SKERO-50-100	
100	0.0100	SKERO-100-100	
300	0.0300	SKERO-300-100	
500	0.0500	SKERO-500-100	
750	0.0750	SKERO-750-100	
1000	0.100	SKERO-1000-100	

Sulfur in Isooctane Standards

VHG's Sulfur in Isooctane standards are ideal for use with the following ASTM methods: D2622, D3120, D3246, D4045, D4294, D5453, D6334, D6445, D7039, D7212, D7220, and others.

Volume: 100mL

Concentration		Product No.
(µg/g)	(wt%)	
Blank	Blank	SISO-BLK-100
5	0.0005	SISO-5-100
10	0.0010	SISO-10-100
15	0.0015	SISO-15-100
20	0.0020	SISO-20-100
25	0.0025	SISO-25-100
50	0.0050	SISO-50-100
75	0.0075	SISO-75-100
100	0.0100	SISO-100-100
200	0.0200	SISO-200-100
300	0.0300	SISO-300-100
400	0.0400	SISO-400-100
500	0.0500	SISO-500-100
750	0.0750	SISO-750-100
1000	0.100	SISO-1000-100
3000	0.300	SISO-3000-100

Sulfur in Crude and Residual Oil Standards

VHG's Sulfur in Crude Oil and Sulfur in Residual Oil Standards are suitable for use with ASTM D2622, D4294, and others.

Matrix: See	Below	Volume: 100mL		
Concentr (µg/g)	ation (wt%)		Crude Oil Product No.	Residual Oil Product No.
Unspiked	Matrix Blank		CRUDE-100	
1000	0.100		SCRD-1000-100	
2500	0.250		SCRD-2500-100	SRES-2500-100
5000	0.500		SCRD-5000-100	SRES-5000-100
10,000	1.00		SCRD-1%-100	SRES-1%-100
20,000	2.00		SCRD-2%-100	SRES-2%-100
30,000	3.00		SCRD-3%-100	SRES-3%-100
40,000	4.00		SCRD-4%-100	SRES-4%-100
50,000	5.00		SCRD-5%-100	SRES-5%-100

Matrix Oils and Solvents

High-purity Matrix Oils and Solvents (<1ppm Sulfur) for the preparation of working standards for petroleum analysis. Supplied with a Certificate of Analysis that includes trace sulfur and metal concentrations.

Matrix: See Below

Material	Volume	Product No.
20 cSt Mineral Oil	500mL	OIL-20MIN-500
20 cSt Mineral Oil	0.5 gal.	OIL-20MIN-1/2GAL
75 cSt Mineral Oil	500mL	OIL-MIN-500
75 cSt Mineral Oil	0.5 gal.	OIL-MIN-1/2GAL
#2 Diesel Fuel	500mL	ULSDSL-500
#2 Diesel Fuel	0.5 gal.	ULSDSL-1/2GAL
Isooctane	500mL	ISO-500
Isooctane	0.5 gal.	ISO-1/2GAL
Kerosene, low odor	500mL	KERO-500
Kerosene, low odor	0.5 gal.	KERO-1/2GAL

Section 1 Petroleum Standards

ICP & RDE Standards Standards for Used Oils Distillation Standards Performance Testing Program

Standards for S, N, Cl and Metals

Sulfur-Free Metallo-Organics Metallo-Organic Concentrates Sulfur & Metals for XRF

➤ Sulfur Nitrogen Chlorine Lead in Gas

Petroleum Physical Test Standards Biodiesel

Polysulfide Oil Standards

Sulfur QC Samples, Drift Monitors and Calibration Standards Made from Polysulfide Oil

VHG Labs' polysulfide oils have been formulated for long shelf life and optimal stability even when exposed to x-rays from modern high wattage XRF spectrometers. In addition, our polysulfide oil products offer high purity, low volatility, and minimal diffusion through sample films.

These standards are well suited to ultra low level sulfur analysis, quality control, drift correction, blank measurement and calibration standards for XRF and other sulfur analysis techniques. Our polysulfide oil standards are intended for use in accordance with ASTM D2622, D4294, D5453, D7039, D7212, D7220 and others.

Description	Product No.
QC Samples	
Sulfur @ 5µg/g, Polysulfide oil, 1L	X3SPS-5-1L
Sulfur @ 10µg/g, Polysulfide oil, 1L	X3SPS-10-1L
Sulfur @ 25µg/g, Polysulfide oil, 1L	X3SPS-25-1L
Drift Monitors	
Sulfur @ 100µg/g, Polysulfide oil, 1L	X3SPS-100-1L
Sulfur @ 500µg/g, Polysulfide oil, 1L	X3SPS-500-1L
Sulfur @ 1,000µg/g, Polysulfide oil, 1L	X3SPS-1000-1L
Blank	
Polysulfide Oil Blank	X3SPS-BLK-1L
Calibration Sets	
Sulfur Standard Set (low concentrations). Set of 13 Calibration Standards with Sulfur @ 0, 1, 2.5, 5, 10, 25, 50, 75, 100, 250, 500, 750, 1000µg/g, made from high-purity polysulfide oil, 50mL each	X3SPS-SET1-13X50
Sulfur Standard Set (high concentrations). Set of 12 Calibration Standards with Sulfur @ 0, 0.1, 0.5, 1, 1.5, 2,2.5, 3, 3.5, 4, 4.5 and 5wt%, made from high-purity polysulfide oil, 50mL each	X3SPS-SET2-12X50
Sulfur Standard Set (low concentrations). Set of 6 Calibration Standards with Sulfur @ 0, 10, 25, 50, 100 and 250µg/g, made from high-purity polysulfide oil, 50mL each	X3SPS-SET3A-6X50
Ultra Low Sulfur EPA Qualification Set Set of 40 Calibration Standards with 10 Sulfur Standards @ 5 and 10µg/g each, and 20 @ 15µg/g, made from high-purity polysulfide oil, 20mL each	X3SPS-SET4-40X20
High Sulfur EPA Qualification Set Set of 40 Calibration Standards with 10 Sulfur Standards @ 100 and 500µg/g each, and 20 @ 300µg/g, made from high-purity polysulfide oil,	X3SPS-SET5-40X20

20mL each

Sulfur in Petroleum Products (Ampoules)

For Low-Level Sulfur Analytical Techniques

Total Sulfur by UV Fluorescence

Calibration Set for ASTM Method D5453 - Total Sulfur in Liquid Petroleum Hydrocarbons by Ultraviolet Fluorescence. Composition: Sulfur in Isooctane. Offered only as a single set of 6 x 2mL ampoules. Sets also available in toluene upon request.

Concentration (ng/µL)	Matrix	Size	Product No.
0, 1.0, 2.5, 5, 7.5, 10	Isooctane	6x2mL	SUVF-SET1
0, 5, 25, 50, 100, 200	Isooctane	6x2mL	SUVF-SET2
0, 100, 250, 500, 750, 1000	Isooctane	6x2mL	SUVF-SET3

Sulfur by Hydrogenolysis and Rateometric Colorimetry

Calibration Set for ASTM D4045 - Sulfur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry. Composition: Sulfur (from n-dibutyl sulfide) in isooctane. Offered only as a single set of 6 x 2mL ampoules.

Concentration (µg/g)	Matrix	Size	Product No.
0, 0.1, 0.5, 1.0, 2.5, 5.0, 10	Isooctane	7x2mL	SRC-SET1A

Determination of Mercaptan Sulfur

Calibration Standards for UOP 163 and ASTM D3227 - Mercaptan Sulfur in Hydrocarbon Liquids by Potentiometric Titration. Composition: Sulfur (from tert-nonyl mercaptan) in isooctane/toluene. Offered only as a single set of $\,^{\circ}$ 8 x 20mL ampoules.

Concentration (µg/g)	Matrix	Size	Product No.	
30	80% Isooctane/	6x20mL	UOP163-30-6X20	
	20% Toluene			

Sulfur Compounds by Selective Detection (100µg/g)

Calibraton Standard for ASTM D5623 - Sulfur compounds in Light Hydrocarbon Liquids by Selective Detection. Composition: Multi-component mixture that contains fourteen (14) sulfur species in base fuel (40% LV isooctane/40% LV hexane/20% LV toluene). Sulfur species include: methanethiol, ethanethiol, dimethylsulfide, 2-propanethiol, t-butanethiol, 1-propanethiol, thiophene, diethylsulfide, 1-butanethiol, diethyl disulfide, thiophenol, benzothiophene, bromothiophene (as internal standard), and diphenyl sulfide. Offered as a single 2mL ampoule.

Concentration of Species	Matrix	Size	Product No.
100μg/g (as Sulfur)	Base Fuel	2mL	MSX14-2

Sulfur Compounds by Selective Detection (50µg/g)

Calibration Standard for ASTM D5623 - Sulfur Compounds in Light Hydrocarbon Liquids by Selective Detection. Composition: Multi-component mixture containing twenty-two (22) sulfur species in base fuel (40% LV isooctane/40% LV hexane/20% LV toluene). Sulfur species include: 2-methyl-1-propanethiol, 2-methylthiophene, 3-methylthiophene, 1,2-ethane dithiol, 1-pentanethiol, 2-ethylthiophene, propylsulfide, t-butyldisulfide, 1,5-pentanedithiol, 1-nonanethiol, 1-decanethiol, propanethiol, t-butylsulfide, 1-heptanethiol, 1,4-butanedithiol, methyl ethylsulfide, propyl disulfide, 1-octanethiol, benzothiophene, 1-hexanethiol, carbon disulfide, and methyl sulfide. Offered as a single 2mL ampoule.

Concentration of Species	Matrix	Size	Product No.
50µg/g (as component)	Base Fuel	2mL	MSX22-2

Section 1 Petroleum Standards

ICP & RDE Standards
Standards for Used Oils
Distillation Standards
Performance Testing
Program
Standards for S. N. Cl.

Standards for S, N, CI and Metals

Sulfur-Free Metallo-Organics Metallo-Organic Concentrates Sulfur & Metals for XRF

Sulfur Nitrogen Chlorine Lead in Gas

Petroleum Physical Test Standards Biodiesel

Section 1 Petroleum Standards

VHG Tips

To convert lead in isooctane concentrations from g/gal to µg/g (ppm), multiply by 370 i.e., 0.1 g/gal=37µg/g.

Sulfur and Nitrogen Products (Ampoules) For Low-Level Analytical Techniques

Sulfur and Nitrogen Combined

Calibration Set for instruments designed for simultaneous determination of sulfur and nitrogen. Composition: Sulfur and Nitrogen in isooctane. Offered only as a single set of 6 x 2mL ampoules. Also available in toluene upon request.

Concentration (ng/µL)	Matrix	Size	Product No.
S @ 0, 1, 5, 10, 15, 20; N @ 0, 1, 5, 20, 35, 50	Isooctane	6x2mL	SN-SET1

Trace Nitrogen by Chemiluminescence

Calibration Set for ASTM Method D4629 - Trace Nitrogen in Liquid Petroleum Hydrocarbons by Chemiluminescence Detection. Composition: N (from pyridine) in isooctane. Offered only as a single set of 9 x 2mL ampoules. Also available in toluene upon request.

Concentration (ng/µL)	Matrix	Size	Product No.	
0, 1, 2, 10, 20, 50, 100,	Isooctane	10x2mL	NCH-SET1	
200, 500, 1000				

Trace Nitrogen by Oxidative Combustion and Electrochemical Detection

Calibration Set for ASTM D6366 - Total Trace Nitrogen and its Derivatives in Liquid Aromatic Hydrocarbons by Oxidative Combustion and Electrochemical Detection. Composition: N (from pyridine) in p-xylene [Set 1] or isooctane [Set 2]. Offered only as single sets of 2mL ampoules. Set also available in toluene upon request (with N from carbazole).

Concentration (ng/µL)	Matrix	Size	Product No.	
0.1, 0.5, 1.0, 2.5, 5.0, 10	p-xylene	6x2mL	NCED-SET1B	
10, 25, 50, 75, 100	Isooctane	5x2mL	NCED-SET2	

Chlorine in Oil Standards For XRF, ICP and Other Techniques

Chlorine St Matrix: Heavy		M D4929 or D5384) Volume: 100mL	
Conce	ntration		
(µg/g)	(wt%)		Oil Product No
Blank	Blank		CLOIL-BLK-100
10	0.001		CLOIL-10-100
100	0.010		CLOIL-100-100
500	0.050		CLOIL-500-100
1,000	0.10		CLOIL-1000-100
10,000	1.00		CLOIL-1%-100
50,000	5.00		CLOIL-5%-100

Standards for Lead in Gasoline

Lead In Isooctane Matrix: Isooctane	Lead In Isooctane Standards for XRF (ASTM D5059) Matrix: Isooctane Volume: 100 Grams				
Method	Conc. (g/gal)*	Product No.			
ASTM D5059 Pt. A	0.0	PBISO-BLK-100G			
II .	0.1	PBISO-0.1-100G			
п	1.0	PBISO-1-100G			
11	2.0	PBISO-2-100G			
п	3.0	PBISO-3-100G			
п	4.0	PBISO-4-100G			
11	5.0	PBISO-5-100G			
ASTM D5059 Pt. A	Set	PBISOSETA-7X100G			
ASTM D5059 Pt. C	0.000	PBISO-BLK-100G			
II .	0.001	PBISO-0.001-100G			
11	0.005	PBISO-0.005-100G			
11	0.010	PBISO-0.010-100G			
"	0.050	PBISO-0.050-100G			
11	0.100	PBISO-0.100-100G			
"	0.300	PBISO-0.300-100G			
ASTM D5059 Pt. C	Set	PBISOSETC-7X100G			

*Note: For approximate conversion from g/gal to μ g/g (ppm), multiply by 380 i.e., 0.1 g/gal=38 μ g/g

Bismuth Internal Standard for ASTM D5059 Matrix: Mineral Oil					
Method	Conc. Bi	Size (grams)	Product No.		
ASTM D5059 Pt. A and C	0.793g/L	100	BIIS-100G		
	0.793g/L	400	BIIS-400G		

Internal Standards for XRF Analysis Sulfur-Free Raw Material in Oil

Internal St	Internal Standards for XRF Analysis					
Element	Method	Concentration	Product No.	Product No.		
Bismuth	ASTM D5059 Pb Analysis	0.793g/L	BIIS-100G	BIIS-400G		
Manganese	ISO/CD 14596 Ni and V Analysis	0.05%	MNIS-100G	MNIS-400G		
Zirconium	ISO/CD 14597 Low Sulfur Analysis	1%	ZRIS1%-100G	ZRIS1%-400G		
Zirconium	ISO/CD 14597 High Sulfur Analysis	16%	ZRIS16%-100G	ZRIS16%-400G		

Section 1
Petroleum
Standards

ICP & RDE Standards Standards for Used Oils Distillation Standards Performance Testing Program

Standards for S, N, Cl and Metals

Sulfur-Free Metallo-Organics Metallo-Organic Concentrates Sulfur & Metals for XRF Sulfur

- ▶ Nitrogen
- ► Chlorine
- Lead in Gas

Petroleum Physical Test Standards

Biodiesel

Petroleum Physical Test Standards

Flash Point Reference Materials

VHG Labs' Flash Point Reference materials are intended for use with and certified by the appropriate ASTM Methods [ASTM D56, D92, D93]. Each standard is verified by consensus analysis, and is supplied with a full Certificate of Analysis (COA) that states the certified value. **Volume: 250mL**

Specification	Apparatus	Typical Flash Point Range (°C)	Product No.
ASTM D93 (Flash Point)	Pensky-Martens Closed-Cup Tester	25-35 55-65 70-80 90-100	FP27-250 FPPM60-250 FP75-250 FP93-250
ASTM D92 (Flash and Fire Point)	Cleveland Open Cup Tester	190-215 220-240	FP200-250 FP230-250
ASTM D56 (Flash Point)	Tag Closed Cup Tester	40-50 50-60 55-65	FP40-250 FP55-250 FPTC60-250

Flash Point Certified Reference Materials

VHG Labs' Flash Point Certified Reference Materials are intended for use in accordance with the specified ASTM Methods [ASTM D56, D92, D93]. They consist of stable, pure hydrocarbons with a method-specific flash point determined by an inter-laboratory study. Each standard is supplied with a full Certificate of Analysis (COA) that states the certified value **Volume: 250mL**

ASTM Method	Hydrocarbon	Typical Flash Point Range °C	Product No.
D93 Flash Point Pensky-Martens Closed Cup Tester	n-Decane n-Undecane n-Tetradecane n-Hexadecane	45-55 65-75 110-120 130-145	FP53-250 FP70-250 FP114-250 FP134-250
D92 Flash & Fire Point Cleveland Open Cup Tester D56 Flash Point Tag Closed Cup Tester	n-Tetradecane n-Hexadecane n-Decane n-Undecane	110-120 135-150 45-55 60-70	FP115-250 FP138-250 FP51-250 FP67-250

Viscosity Reference Standards

VHG Labs provides viscosity reference standards, intended for use in accordance with standard methods [e.g. ASTM D445]. Each standard is manufactured in our ISO 9001 and ISO Guide 34 facility and certified in our ISO/IEC 17025 laboratory. **Volume: 500mL**

Nominal Viscosity @ 40°C (cSt)	Nominal Viscosity @ 100°C (cSt)	Product No.
4.5	1.6	VISC5-500
9.5	2.8	VISC10-500
30	5.3	VISC30-500
54	7.3	VISC60-500
102	15.3	VISC100-500
110	16.8	VISC110-500
130	20	VISC130-500
300	47	VISC300-500
520	57	VISC500-500
920	84	VISC900-500

Petroleum Physical Test Standards

 The following physical test standards are not intended for use with Phase Instruments. Please contact us for Phase-compatible standards.

ASTM D97 Pour Point Reference Materials

VHG Labs' Pour Point Reference Materials are intended for use in accordance with ASTM D97 **only**, for determination of the pour point of petroleum products. Each standards is verified by consensus analysis, and is supplied with a full Certificate of Analysis (COA) that states the certified value.

Volume: 250mL

Typical Pour Point Range (°C)	Product No.
-7 to -3	P5-250
-12 to -8	P10-250
-17 to -13	P15-250
-22 to -18	P20-250
-42 to -36	P40-250
-53 to -47	P50-250

ASTM D2500 Cloud Point Reference Materials

VHG Labs' Cloud Point Reference Materials are intended for use in accordance with ASTM D2500 for the determination of the cloud point of petroleum products. The cloud point of a petroleum product is an index of the lowest temperature of their utility for certain applications. Each standard is verified by consensus analysis, and is supplied with a full Certificate of Analysis (COA) that states the certified value.

Volume: 250mL

Typical Cloud Point Range (°C)	Product No.
+3 to +9	C5-250
-4 to 0	C2-250
-12 to -8	C10-250
-17 to -13	C15-250
-22 to -18	C20-250

ASTM D2386 Freezing Point Reference Materials

VHG Labs' Freezing Point Reference Materials are intended for use in accordance with ASTM Method D2386 for determination of the freezing point of aviation fuels. Each standard is verified by consensus ayalysis, and is supplied with a full Certificate of Analysis (COA) that states the certified value.

Volume: 250mL

Typical Freezing Point Range (°C):	Product No.
-47 to -42	F45-250
-52 to -48	F50-250

ASTM D6371 Cold Filter Plug Point Reference Materials

VHG Labs' Cold Filter Plug Point Standards are intended for use in accordance with ASTM Method D6371/IP309 for determination of the cold filter plug point of diesel and heating fuels. Each standard is verified by consensus analysis, and is supplied with a full Certificate of Analysis (COA) that states the certified value.

Volume: 250mL

Typical Plug Point Range (°C)	Product No.
-20 to -17	CFP1-250

Section 1 Petroleum Standards

ICP & RDE Standards
Standards for Used Oils
Distillation Standards
Performance Testing
Program
Standards for S, N, CI

and Metals
Petroleum Physical Test
Standards

- Flash Point
- ► Viscosity
- ► Pour Point
- ► Cloud Point
- Freezing Point
- Cold Filter Plug Point

Biodiesel

Section 1 Petroleum Standards

Biodiesel Standards

As the demand for biofuels continues to rise, the need to reliably analyze these products has become a necessity for the petroleum industry.

Most biodiesel fuels are comprised of a blend of traditional refined diesel combined with biodiesel fuel. The percentage of biodiesel in the blend is generally 5%, 10% or 15%, and is labeled B5, B10, or B15 respectively. Pure biodiesel (100%) is labeled B100. All of the biodiesel standards manufactured by VHG Labs have a matrix of 100% biodiesel. This is important in the analysis of materials by ICP and other methods because the analysis can often be encumbered by the variance of matrices from standards to samples.

Our biodiesel standards have been formulated specifically for the analysis of metals and sulfur in biodiesel fuel. Our B100 is made from soybean oil and is an excellent matrix match for almost all biodiesel fuel analysis.

V/G

Metals in Biodiesel Standards

These standards have been formulated specifically for the analysis of metals in biodiesel fuel in accordance with ASTM D6751, EN 14107, EN 14108, EN 14109, EN 14214, or EN 14538.

Description	Product No.
Ca, K, Mg, Na, P @ 5µg/g, B100 Biodiesel, 100g	B100M5-5-100G
Ca, K, Mg, Na, P @10µg/g, B100 Biodiesel, 100g	B100M5-10-100G
Ca, K, Mg, Na, P @15µg/g, B100 Biodiesel, 100g	B100M5-15-100G
Ca, K, Mg, Na, P @20µg/g, B100 Biodiesel, 100g	B100M5-20-100G

Sulfur in Biodiesel Standards

These standards have been formulated specifically for the analysis of sulfur in biodiesel fuel in accordance with ASTM D2622, D4294, or D5453.

Description	Product No.
Sufur @ 5µg/g, B100 Biodiesel, 100mL	SB100-5-100
Sufur @ 10µg/g, B100 Biodiesel, 100mL	SB100-10-100
Sufur @ 15µg/g, B100 Biodiesel, 100mL	SB100-15-100
Sufur @ 20µg/g, B100 Biodiesel, 100mL	SB100-20-100
Sufur @ 25µg/g, B100 Biodiesel, 100mL	SB100-25-100
Sufur @ 50µg/g, B100 Biodiesel, 100mL	SB100-50-100
Sufur @ 100µg/g, B100 Biodiesel, 100mL	SB100-100-100
Sufur @ 500µg/g, B100 Biodiesel, 100mL	SB100-500-100

Biodiesel Blanks

These solutions are intended for use as calibration blanks for analysis of metals or sulfur in biodiesel. Each is supplied with a Certificate of Analysis (COA) that includes relevant trace metal and sulfur concentrations.

Description	Product No.
B100 Biodiesel Blank, 100mL	B100-BLK-100
B100 Biodiesel Blank, 500mL	B100-BLK-500

Biodiesel/Diesel Fuel Blends

These standards are intended for use as calibration or reference standards for the determination of fatty acid methyl esters (FAME) biodiesel content in diesel fuel by infrared (IR) spectroscopy. They are formulated specifically for use with ASTM Method D7371 or EN 14078.

Description	Product No.
100% #2 Diesel Fuel, 20mL	BDBLEND-BLK-20
2% (v/v) Biodiesel in #2 Diesel Fuel, 20mL	BDBLEND-2%-20
5% (v/v) Biodiesel in #2 Diesel Fuel, 20mL	BDBLEND-5%-20
10% (v/v) Biodiesel in #2 Diesel Fuel, 20mL	BDBLEND-10%-20
15% (v/v) Biodiesel in #2 Diesel Fuel, 20mL	BDBLEND-15%-20
20% (v/v) Biodiesel in #2 Diesel Fuel, 20mL	BDBLEND-20%-20
100% (v/v) Biodiesel, 20mL	BDBLEND-100%-20

Single-Element Standards

A+ Single-Element

Speciation

Isotopic

AA Standards

Ion Chromatography and Wet Chemistry Standards

IC Standards

Wet Chemistry

QC Check Samples for Water

Multi-Element Standards for ICP-AES and ICP-MS

Multi-Element

Environmental

Trace Elements CRMs

QC Check Samples for Water

EPA 200.7, 6010, CLP

ICP-MS Standards

EPA 200.8, 6020, CLP

VHG Tips

Always pour a small amount from the standard solution to a suitable container for the purpose of volumetric pipette solution transfer. Do not add the removed sample back to the original standard solution container.

Avoid using glass pipettes or transfer devices with standard solutions containing HF. Free HF attacks glass.

When preparing solutions, don't underestimate the importance of good mixing. A simple swirl is not adequate. Invert and shake the container several times.

When making mixes of singleelement standards, chemists should understand inter-element and matrix compatability issues.

Fortunately, most elements are soluble and stable in dilute nitric acid. Have any questions related to this? Call VHG Labs and ask for Technical Support.

Try using HCl rather than HNO₃ as the matrix acid for Hg measurements using

ICP or ICP-MS. Stability of low level solutions is improved and washout times are faster.

No analytical instrument can undo the costs created by poor accuracy of the stock standards. VHG Labs' line of A+ standards are manufactured to leave nothing to chance. They are tested and certified according to a protocol created by the US National Institute of Standards and Technology (NIST) that provides for accurate, precise and traceable certified concentration and uncertainty.

Features of VHG Labs A+ Standards:

- ◆ Ideal for ICP, ICP-MS, AA, GFAA or other elemental techniques
- Prepared from high purity raw materials, acids and 18Mohm DI water
- Manufactured in our ISO 9001, ISO Guide 34 facility, and certified in our ISO/IEC 17025 laboratory
- Assayed by NIST HP-ICP-AES method (see page 38)
- Purity confirmed by ICP-MS
- Accompanied by NIST-traceable COA
- Packaged in acid-leached, triple-rinsed HDPE bottles
- Shipped in poly-sealed bags
- ◆ Most elements certified for 18 months shelf life

		urity Single Elem Calibration Stand		Concentration (10µg/mL)	Concentration (1,000µg/mL)	Concentration (10,000µg/mL)
	Element	Starting Material, Matrix	Vol. (mL)	Product No.	Product No.	Product No.
	Aluminum	Al, HCl	100 50	LALH-100	PALH-100 PALH-500	TALH-100 TALH-500
		Al(NO ₃) ₃ , HNO ₃	100 50	LALN-100	PALN-100 PALN-500	TALN-100 TALN-500
	Antimony	Sb, HCI	100 50	LSBH-100	PSBH-100 PSBH-500	TSBH-100 TSBH-500
		Sb, HNO ₃ , Tartaric Acid	100 50	LSBWTN-100	PSBWTN-100 PSBWTN-500	TSBWTN-100 TSBWTN-500
	Arsenic More Info. (p. 40)	As, HNO ₃ As+3, As+5	100 50	LASN-100	PASN-100 PASN-500	TASN-100 TASN-500
	Barium	Ba(NO ₃) ₂ , HNO ₃	100 50	LBAN-100	PBAN-100 PBAN-500	TBAN-100 TBAN-500
	Beryllium	$Be_4O(C_2H_3O_2)_6,$ HNO_3	100 50	LBEN-100	PBEN-100 PBEN-500	TBEN-100 TBEN-500
	Bismuth	Bi, HNO ₃	100 50	LBIN-100	PBIN-100 PBIN-500	TBIN-100 TBIN-500
	Boron	H ₃ BO ₃ , NH ₄ OH	100 50	LBZ-100	PBZ-100 PBZ-500	TBZ-100 TBZ-500
		H ₃ BO ₃ , H ₂ O	100 50	LBW-100	PBW-100 PBW-500	N/A N/A
	Cadmium	Cd, HNO ₃	100 50	LCDN-100	PCDN-100 PCDN-500	TCDN-100 TCDN-500
	Calcium	CaCO ₃ , HNO ₃	10 50		PCAN-100 PCAN-500	TCAN-100 TCAN-500
	Carbon	CH ₃ CO ₂ H, H ₂ O	10 50		PCW-100 PCW-500	TCW-100 TCW-500
	Cerium	Ce, HNO ₃	10 50		PCEN-100 PCEN-500	TCEN-100 TCEN-500
	Cesium	Cs ₂ CO ₃ , HNO ₃	10 50		PCSN-100 PCSN-500	TCSN-100 TCSN-500
	Chromium	Cr, HCl	10 50		PCRH-100 PCRH-500	TCRH-100 TCRH-500
		Cr(NO ₃) ₃ , HNO ₃	100 50	LCRN-100	PCRN-100 PCRN-500	TCRN-100 TCRN-500
Мо	re Info. (p. 40)	Cr+3, Cr+6				
	Cobalt	Co, HNO ₃	100 50	LCON-100	PCON-100 PCON-500	TCON-100 TCON-500

	urity Single Eleme Calibration Stand		Concentration (10µg/mL)	Concentration (1,000µg/mL)	Concentration (10,000µg/mL)
Element	Starting Material, Matrix	Vol. (mL)	Product No.	Product No.	Product No.
Copper	Cu, HNO ₃	100 500	LCUN-100	PCUN-100 PCUN-500	TCUN-100 TCUN-500
Dysprosium	Dy ₂ O ₃ , HNO ₃	100 500		PDYN-100 PDYN-500	TDYN-100 TDYN-500
Erbium	Er ₂ O ₃ , HNO ₃	100 500		PERN-100 PERN-500	TERN-100 TERN-500
Europium	Eu ₂ O ₃ , HNO ₃	100 500		PEUN-100 PEUN-500	TEUN-100 TEUN-500
Gadolinium	Gd ₂ O ₃ , HNO ₃	100 500		PGDN-100 PGDN-500	TGDN-100 TGDN-500
Gallium	Ga, HNO ₃ , tr. HCl	100 500		PGANH-100 PGANH-500	TGANH-100 TGANH-500
Germanium	Ge, HNO ₃ , tr. HF	100 500	LGENF-100	PGENF-100 PGENF-500	TGENF-100 TGENF-500
	(NH ₄) ₂ GeF ₆ , H ₂ O, tr. F-	100 500		PGEW-100 PGEW-500	N/A N/A
Gold	Au, HCI	100 500		PAUH-100 PAUH-500	TAUH-100 TAUH-500
Hafnium	HfCl ₂ O, HCl	100 500		PHFH-100 PHFH-500	THFH-100 THFH-500
Holmium	Ho ₂ O ₃ , HNO ₃	100 500		PHON-100 PHON-500	THON-100 THON-500
Indium	In, HNO ₃	100 500	LINN-100	PINN-100 PINN-500	TINN-1000 TINN-500
Iridium	IrCl ₃ , HCl	100 500	LIRH-100	PIRH-100 PIRH-500	TIRH-100 TIRH-500
Iron	Fe, HNO ₃	100 500		PFEN-100 PFEN-500	TFEN-100 TFEN-500
Lanthanum	La ₂ O ₃ , HNO ₃	100 500		PLAN-100 PLAN-500	TLAN-100 TLAN-500
Lead	Pb, HNO3	100 500	LPBN-100	PPBN-100 PPBN-500	TPBN-100 TPBN-500
Lithium ore Info. (p.41)	Li ₂ CO ₃ , HNO ₃	100 500	LLIN-100	PLIN-100 PLIN-500	TLIN-100 TLIN-500
Lutetium	Lu ₂ O ₃ , HNO ₃	100 500	LLUN-100	PLUN-100 PLUN-500	TLUN-100 TLUN-500
Magnesium	Mg, HNO ₃	100 500		PMGN-100 PMGN-500	TMGN-100 TMGN-500
Manganese	Mn, HNO ₃	100 500	LMNN-100	PMNN-100 PMNN-500	TMNN-100 TMNN-500
Mercury	Hg, HNO ₃	100 500	LHGN-100	PHGN-100 PHGN-500	THGN-100 THGN-500
Methyl Mercury Chloride	CH ₃ HgCl More Info. (p. 40)				
Molybdenum	Mo, HNO _{3,} tr. HF	100 500	LMONF-100	PMONF-100 PMONF-500	TMONF-100 TMONF-500
	(NH ₄) ₂ MoO ₄ , NH ₄ OH	100 500		PMOZ-100 PMOZ-500	TMOZ-100 TMOZ-500

Single-Element Standards

A+ Single-Element
Speciation
Isotopic
Atomic Absorption

Ion Chromatography and Wet Chemistry Standards Multi-Element Standards for ICP-AES and ICP-MS

VHG Tips

Try doing dilutions on a wt./wt. basis; the uncertainty of a balance is much lower than a pipette.

"Trace HF" refers to a small amount of HF added to stabilize some elements that require it. Concentrations are below 0.5%. When "F-" is stated, the reference is to fluoride as part of a raw material compound. These have F- at similarly low, dilute levels with no additional fluoride added.

"Matrix-matching" of major sample components can be of great benefit with many spectrometric techniques. Our 1% (10,000µg/mL) standards work well as stock materials for these purposes.

When working with osmium, only mix the standard with water and HCl. Do not use nitric acid. Nitric acid will slowly oxidize the Os to OsO₄, which is volatile and very toxic.

"Fall-out" or precipitation of an analyte will ruin your analysis. Be especially aware of any mixing of Ag and Cl-, Ba and SO₄⁻², and Mg, Sc (and other lanthanides/actinides) with F-.

As a rule of thumb, the total concentration of all elements (metals) in a multi-element mixture should be kept below 20,000µg/mL (2%).

Silver is stable in HCl up to 100ppm. Add Ag concentrate to concentrated HCl to effect complexation, then bring to volume with dilute HCl.

Single-Element Standards

A ⁺ High Pu Aqueous C	rity Single Eleme Calibration Standa	ent ards	Concentration (10µg/mL)	Concentration (1,000µg/mL)	Concentration (10,000µg/mL)
Element	Starting Material, Matrix	Vol. (mL)	Product No.	Product No.	Product No.
Neodymium	Nd ₂ O ₃ , HNO ₃	100 500		PNDN-100 PNDN-500	TNDN-100 TNDN-500
Nickel	Ni, HNO ₃	100 500	LNIN-100	PNIN-100 PNIN-500	TNIN-100 TNIN-500
Niobium	NbCl ₅ , HF	100 500		PNBF-100 PNBF-500	TNBF-100 TNBF-500
	NH ₄ NbF ₆ , H ₂ O, tr. F-	100 500		PNBW-100 PNBW-500	TNBW-100 TNBW-500
Osmium	(NH ₄) ₂ OsCl ₆ , HCl	100 500		POSH-100 POSH-500	N/A N/A
Palladium	Pd, HCl	100 500		PPDH-100 PPDH-500	TPDH-100 TPDH-500
	Pd, HNO ₃	100 500		PPDN-100 PPDN-500	TPDN-100 TPDN-500
Phosphorus	H ₃ PO ₄ , H ₂ O	100 500		PPW-100 PPW-500	TPW-100 TPW-500
Platinum	Pt, HCI	100 500	LPTH-100	PPTH-100 PPTH-500	TPTH-100 TPTH-500
Potassium	KNO ₃ , HNO ₃	100 500		PKN-100 PKN-500	TKN-100 TKN-500
Praseo- dymium	Pr ₆ O ₁₁ , HNO ₃	100 500		PPRN-100 PPRN-500	TPRN-100 TPRN-500
Rhenium	Re, HNO ₃	100 500		PREN-100 PREN-500	TREN-100 TREN-500
Rhodium	RhCl ₃ , HCl	100 500	LRHH-100	PRHH-100 PRHH-500	TRHH-100 TRHH-500
Rubidium	Rb ₂ CO ₃ , HNO ₃	100 500		PRBN-100 PRBN-500	TRBN-100 TRBN-500
Ruthenium	RuCl ₃ , HCl	100 500		PRUH-100 PRUH-500	TRUH-100 TRUH-500
Samarium	Sm ₂ O ₃ , HNO ₃	100 500		PSMN-100 PSMN-500	TSMN-100 TSMN-500
Scandium More Info. (p.66	Sc ₂ O ₃ , HNO ₃	100 500	LSCN-100	PSCN-100 PSCN-500	TSCN-100 TSCN-500
Selenium	Se, HNO ₃	100 500	LSEN-100	PSEN-100 PSEN-500	TSEN-100 TSEN-500
ore Info. (p.40) Silica - More					
Silicon	Si, HNO ₃ , tr. HF	100 500		PSINF-100 PSINF-500	TSINF-100 TSINF-500
	(NH ₄) ₂ SiF ₆ , H ₂ O, tr. F ⁻	100 500		PSIW-100 PSIW-500	TSIW-100 TSIW-500
Silver	Ag, HNO ₃	100 500	LAGN-100	PAGN-100 PAGN-500	TAGN-100 TAGN-500
Sodium	Na ₂ CO ₃ , HNO ₃	100 500		PNAN-100 PNAN-500	TNAN-100 TNAN-500
Strontium	Sr(NO ₃) ₂ , HNO ₃	100 500	LSRN-100	PSRN-100 PSRN-500	TSRN-100 TSRN-500
Sulfur	(NH ₄) ₂ SO ₄ , H ₂ O	100 500		PSW-100 PSW-500	TSW-100 TSW-500
Tantalum	TaCl ₅ , HF	100 500		PTAF-100 PTAF-500	TTAF-100 TTAF-500

Single-Element Standards

A+ High Purity Single Element Aqueous Calibration Standards		Concentration (10µg/mL)	Concentration (1,000µg/mL)	Concentration (10,000µg/mL)	
Element	Starting Material, Matrix	Vol. (mL)	Product No.	Product No.	Product No.
Tellurium	Te, HCl	100 500		PTEH-100 PTEH-500	TTEH-100 TTEH-500
	Te, HNO ₃	100 500		PTEN-100 PTEN-500	N/A N/A
Terbium	Tb ₄ O ₇ , HNO ₃	100 500	LTBN-100	PTBN-100 PTBN-500	TTBN-100 TTBN-500
Thallium	TI, HNO ₃	100 500		PTLN-100 PTLN-500	TTLN-100 TTLN-500
Thorium	Th(NO ₃) ₄ , HNO ₃	100 500		PTHN-100 PTHN-500	TTHN-100 TTHN-500
Thulium	Tm ₂ O ₃ , HNO ₃	100 500		PTMN-100 PTMN-500	TTMN-100 TTMN-500
Tin	Sn, HCl	100 500	LSNH-100	PSNH-100 PSNH-500	TSNH-100 TSNH-500
	Sn, HNO ₃ , tr. HF	100 500	LSNNF-100	PSNNF-100 PSNNF-500	TSNNF-100 TSNNF-500
Titanium	Ti, HNO ₃ , tr. HF	100 500	LTINF-100	PTINF-100 PTINF-500	TTINF-100 TTINF-500
	(NH4)2TiF6,H2O, tr. F -	100 500		PTIW-100 PTIW-500	TTIW-100 TTIW-500
Tungsten	W, HNO ₃ , tr. HF	100 500		PWNF-100 PWNF-500	TWNF-100 TWNF-500
	$(NH_4)_2WO_4, H_2O$	100 500		PWW-100 PWW-500	TWW-100 TWW-500
Uranium	U ₃ O ₈ , HNO ₃	100 500	LUN-100	PUN-100 PUN-500	TUN-100 TUN-500
Vanadium	V ₂ O ₅ , HNO ₃	100 500	LVN-100	PVN-100 PVN-500	TVN-100 TVN-500
Ytterbium	Yb ₂ O ₃ , HNO ₃	100 500		PYBN-100 PYBN-500	TYBN-100 TYBN-500
Yttrium	Y ₂ O ₃ , HNO ₃	100 500	LYN-100	PYN-100 PYN-500	TYN-100 TYN-500
Zinc	Zn, HNO ₃	100 500	LZNN-100	PZNN-100 PZNN-500	TZNN-100 TZNN-500
Zirconium	ZrCl ₂ O, HCl	100 500		PZRH-100 PZRH-500	TZRH-100 TZRH-500

Section 2 Aqueous Standards

Single-Element Standards

► A+ Single-Element Speciation Isotopic Atomic Absorption

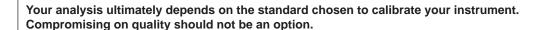
Ion Chromatography and Wet Chemistry Standards Multi-Element Standards for ICP-AES and ICP-MS

NIST High Performance ICP-AES Protocol

VHG Labs' A+ Standards are certified to provide the highest possible confidence.

As part of our long-term commitment to continuous improvement, VHG participated in original research conducted by the National Institute of Standards and Technology (NIST) in 1999. The primary goal of this research was to provide a more accurate instrument-based methodology for metals determinations. An additional goal of the NIST method was to have a complete and unbroken chain of traceability to standard reference materials. The result of this work is the NIST High Performance ICP-AES method⁽¹⁾.

The NIST High Performance Method is the Core of VHG's A* Single Element Standard Product Line


It is widely accepted that standards prepared gravimetrically in the classical manner provide reasonable concentration accuracy. Many commercial vendors stop there. At VHG Labs, we go several steps further — the NIST protocol prescribes that four independent dilutions of the gravimetric standard are made at a concentration optimized for the ICP-AES system. At the same time, four additional, independent preparations of a reference standard are made. We utilize NIST 300-Series SRM calibrants; thus providing direct, NIST SRM traceable certification. The eight (total) samples also have a method-specified internal reference spike added to provide additional control measurements for quantitative and statistical analysis. Once rigorous criteria are met for the array-based ICP-AES instrument, over 800 measurements are obtained on these samples. The raw data is processed with a program created by NIST and provides extremely accurate, traceable concentration results, as well as a meaningful expanded uncertainty that is also directly traceable to the NIST SRM. For additional technical information, please visit our website.

A+ Standards feature:

- Rigorous quality control
- Highest purity with minimal traces
- Complete traceability to NIST SRM

Superior packaging in pre-cleaned containers

1. M. Salit, G. Turk et. Al, Anal. Chem., 2001, 73, 4821-4829.

CERTIFICATE OF ANALYSIS

Single-Element Aqueous CRM

Silver $(Ag) - 1000 \mu g/mL$

Matrix: 5% HNO₃ Lot #: Sample

Product #: PAGN-XXX Expires: January 2012

Element	Certified Concentration & Uncertainty
Δσ	$1,001 \pm 3 \mu g/mL (w/v)$
Ag	$985 \pm 3 \mu\text{g/g} (\text{w/w})$

Intended Use: This solution is intended for use as a certified reference material or calibration standard for inductively coupled plasma optical emission spectroscopy (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), flame or furnace atomic absorption spectroscopy (AA or GFAA), x-ray fluorescence spectroscopy (XRF), and other techniques for elemental analysis.

Certification & Traceability: VHG CRMs are manufactured and certified under a quality management system that is registered to ISO 9001, ISO Guide 34 and ISO/IEC 17025. This CRM was prepared to a nominal concentration of 1000µg/mL by gravimetric methods using 99.9999% pure silver (Ag) metal dissolved in high purity nitric acid (HNO3) and diluted with filtered (0.22µm), 18 M-ohm deionized water. The balances used in the preparation of VHG CRMs are calibrated regularly with traceability to NIST. All volumetric dilutions are performed in Class A calibrated glassware. The certified concentration and uncertainty were determined by VHG Labs using the "High Performance ICP-OES" protocol developed by NIST (visit www.vhglabs.com for further information) and both the certified concentration and uncertainty values are traceable to NIST SRM 3151, lot #992212. The uncertainty associated with the certified concentration represents the expanded uncertainty at the 95% confidence level using a coverage factor of k=2.

Uncertified Values: ICP-MS was used to determine trace metal concentrations for this product (nd = not determined).

					Tra	ace Concen	trations (į	μg/L)					
Ag	MAJOR	Ce	< 0.2	Gd	< 0.2	Lu	< 0.2	Pb	<1	Se	<2	Tl	< 0.5
Al	<2	Co	<1	Ge	< 0.5	Mg	<5	Pd	< 0.5	Si	<100	Tm	< 0.2
As	<2	Cs	< 0.5	Hf	< 0.2	Mn	<1	Pr	< 0.2	Sm	< 0.2	U	< 0.5
Au	< 0.5	Cr	< 0.5	Hg	< 0.5	Mo	< 0.5	Pt	< 0.5	Sn	< 0.5	V	<1
В	<5	Cu	<1	Но	< 0.2	Na	<25	Rb	< 0.5	Sr	<1	W	< 0.5
Ba	<1	Dy	< 0.2	In	nd	Nb	< 0.5	Re	< 0.2	Ta	< 0.5	Y	< 0.5
Be	< 0.5	Er	< 0.2	Ir	< 0.2	Nd	< 0.2	Rh	< 0.5	Tb	< 0.5	Yb	< 0.2
Bi	< 0.2	Eu	< 0.2	K	<25	Ni	<2	Ru	< 0.5	Te	<1	Zn	<2
Ca	<20	Fe	<10	La	< 0.5	Os	< 0.5	Sb	<1	Th	< 0.5	Zr	< 0.5
Cd	< 0.5	Ga	< 0.5	Li	<2	P	<100	Sc	<5	Ti	<2		

Instructions for Use: We recommend that the solution be thoroughly mixed by repeated shaking or swirling of the bottle immediately prior to use. To achieve the highest accuracy the analyst should: (1) use only pre-cleaned containers and transferware, (2) not pipette directly from the CRM's original container, (3) use a minimum sub-sample size of 500µL, (4) make dilutions using calibrated balances or certified volumetric class A flasks and pipettes, (5) dilute with the same matrix as the original CRM, and (6) never pour used product back into the original container. The solution should be kept tightly capped and stored under normal laboratory conditions. Do not freeze, heat, or expose to direct sunlight. Minimize exposure to moisture or high humidity.

Period of Validity: VHG ensures the accuracy of this solution until the expiration date shown above, provided the instructions for use are followed. During the period of validity, the purchaser will be notified if this product is recalled due to any significant changes in the stability of the solution.

VHG Labs, Inc.

Susan Evans Norris, Certifying Officer

7/1/2010

VHG Labs, Inc. waives all responsibility for any damages resulting from the usage and/or implementation of the products/data described herein.

VHG Tips

⁶Li is a well documented internal standard for ICP-MS. But did you know that other isotopic materials can be used as effective internal standards? Example: Try ⁶1Ni for the important transition metal range.

Feel free to call VHG's Technical Services Division with questions about speciation or isotopic analysis.

Speciation Standards

Is elemental concentration measurement enough? Analysis of environmental, biological and food-stuff samples now often involves chromatographic separation of certain elements according to their chemical species followed by detection using AA, ICP-AES or ICP-MS. In some cases, simple low pressure chromatography is adequate, while others require full HPLC separations followed by elemental detection.

Speciation Single-Element Standards							
Element	Analyte	Matrix	Concentration (µg/mL)	Vol. (mL)	Product		
Arsenic	As ⁺³ (from As ₂ O ₃)	2% HCI	100	50 100	SPAS3-50 SPAS3-100		
	As ⁺⁵ (from As ₂ O ₅)	H ₂ O	100	50 100	SPAS5W-50 SPAS5W-100		
Chromium	Cr ⁺³ (from Cr(NO ₃) ₃)	2% HNO ₃	100	50 100	SPCR3-50 SPCR3-100		
	Cr ⁺⁶ (from Na ₂ CrO ₄)	H ₂ O	100	50 100	SPCR6-50 SPCR6-100		
	Cr ⁺⁶ (from Na ₂ CrO ₄)	H ₂ O	1000	100 500	PCR6W-100 PCR6W-500		
Selenium	Se ⁺⁴ (from H ₂ SeO ₃)	2% HNO ₃	100	50 100	SPSE4-50 SPSE4-100		
	Se ⁺⁶ (from H ₂ SeO ₄)	H ₂ O	100	50 100	SPSE6-50 SPSE6-100		

Organic Mercu	Organic Mercury Standard							
Element	Analyte	Matrix	Concentration	Vol. (mL)	Product			
Organic Mercury	CH ₃ Hg(II)Cl Methyl Mercury Chloride	H ₂ O	1000µg/mL	25	MMC-25			

We can prepare custom standards of Methyl Mercury Chloride for your convenience.

Isotopic Standards

Mass spectrometry, in particular ICP-MS, is a powerful technique to measure elemental isotopes. The measurement of individual isotopes can reveal important information about the origin of the element in the sample. Isotope Dilution Mass Spectrometry (IDMS) is often touted as being the most accurate mode of sample 'unknown' analysis.

VHG offers a selection of isotope reference materials. These are non-radioactive, "stable" isotopes and can be handled like any aqueous metal standard. Each standard comes with a Certificate of Analysis (COA) that documents the certified isotopic abundances. Please inquire with requests for isotopes not found here.

Isotopic Single-Element Standards						
Element	Matrix	Total Elemental Concentration (µg/mL)	Size (mL)	Product No.		
Boron 10, ¹⁰ B	2% HNO ₃	100	50mL	LIS10BN-50		
Boron 11, ¹¹ B	H ₂ O	100	50mL	LIS11B-50		
Cadmium 106, ¹⁰⁶ Cd	2% HNO ₃	10	50mL	LIS106CD-50		
Chromium 50, ⁵⁰ Cr	2% HNO ₃	10	50mL	LIS50CR-50		
Copper 65, ⁶⁵ Cu	2% HNO ₃	10	50mL	LIS65CU-50		
Iron 57, ⁵⁷ Fe	2% HNO ₃	10	50mL	LIS57FE-50		
Lead, "Natural" Pb	2% HNO ₃	100	50mL	LISPB1-50		
Lithium 6, ⁶ Li	2% HNO ₃	100	100mL	LIS6LIZ-100		
Neodymium, Natural Nd	2% HNO₃	10	50mL	LISND-50		
Nickel 61, ⁶¹ Ni	2% HNO ₃	10	50mL	LIS61NI-50		
Selenium 78, ⁷⁸ Se	2% HNO ₃	10	50mL	LIS78SE-50		
Selenium 82, 82Se	2% HNO ₃	10	50mL	LIS82SE-50		
Strontium, Natural Sr	2% HNO ₃	100	50mL	LISSR-50		
Strontium 86, 86Sr	2% HNO ₃	10	50mL	LIS86SR-50		
Tin 122, ¹²² Sn	2% HNO _{3,} tr. HF	10	50mL	LIS122SN-50		
Thallium 203, ²⁰³ TI	2% HNO ₃	10	50mL	LIS203TL-50		
Zinc 68, ⁶⁸ Zn	2% HNO ₃	10	50mL	LIS68ZN-50		

VHG Labs can supply other elements and/or other isotopes of the elements listed above. Call to inquire.

Section 2 Aqueous Standards

Single Element Standards

A+ Single-Element

- ▶ Speciation
- ► Isotopic

Atomic Absorption

Ion Chromatography and Wet Chemistry Standards Multi-Element Standards for ICP-AES and ICP-MS

VHG Tips

To determine the mass of matrix modifier added to the furnace, multiply the concentration of the modifier by 0.005 for 5µL aliquots or 0.02 for 20µL aliquots.

Atomic Absorption Standards

- Suitable for all spectrometric techniques
- Manufactured from high purity raw materials
- Higher accuracy and lower uncertainty than competitive standards
- Certificate of Analysis provided with each standard
- Stocked for prompt shipment

AA Aqueous Concentration:			tandards	AA Aqueous Concentration:			tandards
Element	Matrix	Vol. (mL)	Product No.	Element	Matrix	Vol. (mL)	Product No.
Aluminum Al	HCI	100 500	AALH-100 AALH-500	Manganese Mn	HNO ₃	100 500	AMNN-100 AMNN-500
Antimony Sb	HCI	100 500	ASBH-100 ASBH-500	Mercury Hg	HNO ₃	100 500	AHGN-100 AHGN-500
Arsenic As	HNO ₃	100 500	AASN-100 AASN-500	Molybdenum Mo	HNO _{3,} tr. HF	100 500	AMONF-100 AMONF-500
Barium Ba	HNO ₃	100 500	ABAN-100 ABAN-500	Nickel Ni	HNO ₃	100 500	ANIN-100 ANIN-500
Beryllium Be	HNO ₃	100 500	ABEN-100 ABEN-500	Palladium Pd	HCI	100 500	APDH-100 APDH-500
Bismuth Bi	HNO ₃	100 500	ABIN-100 ABIN-500	Platinum Pt	HCI	100 500	APTH-100 APTH-500
Boron B	H ₂ O	100 500	ABW-100 ABW-500	Potassium K	HNO ₃	100 500	AKN-100 AKN-500
Cadmium Cd	HNO ₃	100 500	ACDN-100 ACDN-500	Selenium Se	HNO ₃	100 500	ASEN-100 ASEN-500
Calcium Ca	HNO ₃	100 500	ACAN-100 ACAN-500	Silicon Si	HNO ₃ , tr. HF	100 500	ASINF-100 ASINF-500
Chromium Cr	HCI	100 500	ACRH-100 ACRH-500	Silver Ag	HNO ₃	100 500	AAGN-100 AAGN-500
Cobalt Co	HNO ₃	100 500	ACON-100 ACON-500	Sodium Na	HNO ₃	100 500	ANAN-100 ANAN-500
Copper Cu	HNO ₃	100 500	ACUN-100 ACUN-500	Strontium Sr	HNO ₃	100 500	ASRN-100 ASRN-500
Gold Au	HCI	100 500	AAUH-100 AAUH-500	Thallium TI	HNO ₃	100 500	ATLN-100 ATLN-500
Iron Fe	HNO ₃	100 500	AFEN-100 AFEN-500	Tin Sn	HCI	100 500	ASNH-100 ASNH-500
Lead Pb	HNO ₃	100 500	APBN-100 APBN-500	Titanium Ti	HNO ₃ , tr. HF	100 500	ATINF-100 ATINF-500
Lithium Li	HNO ₃	100 500	ALIN-100 ALIN-500	Vanadium V	HNO ₃	100 500	AVN-100 AVN-500
Magnesium Mg	HNO ₃	100 500	AMGN-100 AMGN-500	Zinc Zn	HNO ₃	100 500	AZNN-100 AZNN-500

Matrix Modifiers, Ionization Buffers and Releasing Agents

- Rigorous quality control of AA products
- Certificate of analysis supplied with each
- Matrix Modifier purity checked for over 70 elements

MPM3-250

CEAA Matrix Madifia	**		
GFAA Matrix Modifie Modifer	Matrix	Volume (mL)	Product No.
Ammonium Phosphate	10% NH ₄ H ₂ PO ₄ , 2% HNO ₃	100	MAP10%-100
Magnesium Nitrate	1% Mg(NO ₃) ₂ , 2% HNO ₃	100	MMGN1%-100
Nickel Nitrate	1% Ni(NO ₃) ₂ , 2% HNO ₃	100	MNIN1%-100
Palladium Nitrate	0.1% Pd, 10% HNO₃ 1% Pd, 10% HNO₃	100 100	MPDN1K-100 MPDN1%-100
Pre-Mixed GFAA Mat	rix Modifiers		
Modifer	Matrix	Volume (mL)	Product No.
Pd + Mg	750μg/mL Pd & 500μg/mL Mg(NO ₃) ₂ , 2% HNO ₃	250	MPM1-250
Pd + Mg	1000μg/mL Pd & 600μg/mL Mg(NO ₃) ₂ , 2% HNO ₃	250	MPM2-250

Ionization Buffers							
Material	Matrix	Volume (mL)	Product No.				
Lithium Nitrate	1% Li (from carbonate), 5% HNO ₃	100	MLIN1%-100				
Cesium Nitrate	1% Cs (from carbonate), 5% HNO ₃	100	MCSN1%-100				
Lanthanum Releasing Agents							

10mg/mL NH $_4$ H $_2$ PO $_4$ & 600 μ g/mL Mg(NO $_3$) $_2$, 2% HNO $_3$

250

Lanthanum Releasing Agents							
Material	Matrix	Volume (mL)	Product No.				
Lanthanum Chloride	1% La (from oxide), 2% HCI	100	MLAH1%-100				
Lanthanum Nitrate	1% La (from oxide), 5% HNO ₃	100	MLAN1%-100				

See Page 97 for Hydride and Cold Vapor AA Supplies.

Amm. Phos + Mg

Section 2 Aqueous Standards

Single-Element Standards

A+ Single-Element Speciation Isotopic

► Atomic Absorption

Ion Chromatography and Wet Chemistry Standards Multi-Element Standards for ICP-AES and ICP-MS

VHG Tips

We also prepare custom IC standards to your specifications. Call VHG Labs' Customer Service to submit a request.

Gravimetric Factors for IC Standards:

1,000 μ g/mL NO $_3$ =226mg/L N 1,000 μ g/mL NO $_2$ =305mg/L N 1,000 μ g/mL PO $_4$ -3=326mg/L P 1,000 μ g/mL SO $_4$ -2=334mg/L S

Ion Chromatography Standards

- ◆ Prepared from high purity raw materials and 18Mohm DI water
- Manufactured in our ISO 9001 facility
- Accompanied by NIST-traceable COA

Anio			Concentration (100µg/mL)	Concentration (1,000µg/mL)	Concentrati (10,000µg/mL)
lon	Raw Material, Matrix	Vol. (mL)	Product	Product No.	Product No.
Acetate CH ₃ CO ₂ -	CH ₃ CO ₂ Na, H ₂ O	100 500		IACET-100 IACET-500	I1%ACET-500
Bromate BrO ₃ ⁻	NaBrO ₃ , H ₂ O	100 500		IBRO3-100 IBRO3-500	
Bromide Br ⁻	KBr, H ₂ O NH ₄ Br, H ₂ O	100 500 100 500		IBR-100 IBR-500	I1%BR-500 I1%ABR-100 I1%ABR-500
Chlorate CIO ₃ -	NaClO ₃ , H ₂ O	100 500		ICLO3-100 ICLO3-500	
Chloride Cl ⁻	KCI, H ₂ O NH ₄ CI, H ₂ O	100 500 100 500	ICL100-500	ICL1K-100 ICL1K-500	11%CL-100 11%CL-500 11%ACL-100 11%ACL-500
Chlorite CIO ₂ -	NaCIO ₂ , H ₂ O	100 500		ICLO2-100 ICLO2-500	1%CLO2-100 I1%CLO2-500
Chromate CrO ₄ -2	K ₂ CrO ₄ , H ₂ O	100 500		ICRO-100 ICRO-500	I1%CRO-100 I1%CRO-500
Dichromate Cr ₂ O ₇ -2	Na ₂ Cr ₂ O ₇ , H ₂ O	100 500		IDCRO-100 IDCRO-500	I1%DCRO-100 I1%DCRO-500
Fluoride F ⁻	NaF, H ₂ O	100 500	IF100-500	IF1K-100 IF1K-500	I1%F-500
Formate HCO ₂ -	HCO ₂ Na, H ₂ O	100 500		IFORM-100 IFORM-500	
Glycolate C ₂ H ₃ O ₃ ⁻	NaC ₂ H ₃ O ₃ , H ₂ O	100 500		IGLY-100 IGLY-500	
lodide -	Nal, H ₂ O NH ₄ I, H ₂ O	100 500 100 500		II-100 II-500	1% -500 1%A -100 1%A -500
Molybdate MoO ₄ -2	Na ₂ MoO ₄ , H ₂ O	100 500 l	MOLB100-500	IMOLB-100 IMOLB-500	
Nitrate NO ₃ ⁻	NaNO ₃ , H ₂ O	100 500		INO3-100 INO3-500	I1%NO3-100 I1%NO3-500
Nitrate as N	NaNO ₃ , H ₂ O	100 500		INO3N-100 INO3N-500	I1%NO3N-100 I1%NO3N-500
Nitrite NO ₂ -	NaNO ₂ , H ₂ O	100 500		INO2-100 INO2-500	I1%NO2-100 I1%NO2-500
Nitrite as N NO ₂ -	NaNO ₂ , H ₂ O	100 500		INO2N-100 INO2N-500	I1%NO2N-100 I1%NO2N-500
Oxalate C ₂ O ₄ -2	Na ₂ C ₂ O ₄ , H ₂ O	100 500		IOXAL-100 IOXAL-500	I1%OXAL-500
Perchlorate CIO ₄ ⁻	NaClO ₄ , H ₂ O	100 500		ICLO4-100 ICLO4-500	I1%CLO4-500
Phosphate PO ₄ -3	KH ₂ PO ₄ , H ₂ O	100 500		IPO4-100 IPO4-500	I1%PO4-500
Phosphate as P, PO ₄ -3	KH ₂ PO ₄ , H ₂ O	100 500		IPO4P-100 IPO4P-500	I1%PO4P-500
Silica SiO ₂	Na ₂ SiO ₃ , H ₂ O	100 500	ISIO2100-500	ISIO21K-100 ISIO21K-500	
Sulfate SO ₄ -2	K ₂ SO ₄ , H ₂ O	100 500	ISO4100-500	ISO41K-100 ISO41K-500	I1%SO4-100 I1%SO4-500

Ion Chromatography Standards

Cations			Concentration (100µg/mL)	Concentration (1,000µg/mL)	Concentration (10,000µg/mL)
Ion	Raw Material, Matrix	Vol. (mL)	Product No.	Product No.	Product No.
Ammonium NH ₄ ⁺	(NH ₄) ₂ SO ₄ , H ₂ O	100 500	INH4100-500	INH41K-100 INH41K-500	I1%NH4-100 IHN1%NH4-500
Barium Ba ⁺²	Ba(NO_3) ₂ , dil. HNO_3	100 500		IBA-100 IBA-500	
Calcium Ca ⁺²	CaCO ₃ , dil. HNO ₃	100 500		ICA-100 ICA-500	
Ethanolamine	e HOCH ₂ CH ₂ NH ₂ , H ₂ O	100 500		IETA1K-100 IETA1K-500	IETA1%-500
Lithium Li ⁺	Li ₂ CO ₃ , dil. HNO ₃	100 500	ILI100-500	ILI1K-100 ILI1K-500	
Magnesium Mg ⁺²	Mg, dil. HNO ₃	100 500		IMG-100 IMG-500	
Potassium K ⁺	KNO ₃ , dil. HNO ₃	100 500		IK-100 IK-500	
Sodium Na ⁺	Na ₂ CO ₃ , dil. HNO ₃	100 500		INAN-100 INAN-500	
	NaCl, H ₂ O	100 500	INAW100-500	INAW1K-100 INAW1K-500	

Ammonia				
Ion	Raw Material, Matrix	Conc. (µg/mL)	Volume (mL)	Product No.
Ammonia NH ₃	(NH ₄) ₂ SO ₄ , H ₂ O	1	100 500	INH3-1-100 INH3-1-500
Ammonia NH ₃	(NH ₄) ₂ SO ₄ , H ₂ O	10	100 500	INH3-10-100 INH3-10-500
Ammonia NH ₃	(NH ₄) ₂ SO ₄ , H ₂ O	100	100 500	INH3-100-100 INH3-100-500
Ammonia NH ₃	(NH ₄) ₂ SO ₄ , H ₂ O	1000	100 500	INH3-1K-100 INH3-1K-500
Ammonia NH ₃	(NH ₄) ₂ SO ₄ , H ₂ O	10,000	100 500	INH3-1P-100 INH3-1P-500

For other anion and cation single-element standards at 100µg/mL or 1%, please inquire.

Section 2 Aqueous Standards

Single-Element Standards Ion Chromatography and Wet Chemistry Standards

► Ion Chromatography Wet Chemistry QC Checks for Water

Multi-Element Standards for ICP-AES and ICP-MS

VHG Tips

Use only glass containers for IC multi-element standards containing nitrite ion in order to maximize shelf life.

Call us if you'd like "ready-togo" cubitainers of eluent solutions.

Eluents

Eluent Concentrates (ready to dilute by 100 for most applications)						
Product	Description	Size	Product No.			
Eluent 1	0.18M Na ₂ CO ₃ and 0.17M NaHCO ₃	500mL	IELUENT1-500			
Eluent 3	0.5M Na ₂ CO ₃	500mL	IELUENT3-500			
Eluent 4	0.5M NaHCO ₃	500mL	IELUENT4-500			
Methanesulfonic Acid	CH ₃ SO ₃ H	500g	JMSA-500G			

Multi-Ion Standards

For Ion Chromatography

Multi-Anion Standards			
lons	Conc. (µg/mL)	Matrix	Product No.
Multi-Anion Standard 1 - Volume 100mL	100	H ₂ O	ICM1-100
F ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , PO ₄ ⁻³ , SO ₄ ⁻²			
Multi-Anion Standard 2 - Volume 100mL	100	H ₂ O	ICM2-100
F ⁻ , Cl ⁻ , SO ₄ ⁻²			
Multi-Anion Standard 3 - Volume 100mL		H ₂ O	ICM3-100
F ⁻ CI ⁻ NO ₃ ⁻ PO ₄ ⁻³ , SO ₄ ⁻²	20 30 100 150		
Multi-Anion Standard 4 - Volume 100mL		H ₂ O	ICM4-100
F ⁻ Cl ⁻ Br ⁻ , NO ₃ ⁻ , SO ₄ ⁻² PO ₄ ⁻³	100 200 400 600		
Multi-Anion Standard 7A - Volume 100mL	1000	H ₂ O	ICM7A-100
F-, Cl-, NO ₃ - as N, Br-, SO ₄ -2, PO ₄ -3 as P			
Multi-Anion Standard 8 - Volume 100mL	1000	H ₂ O	ICM8-100
Cl ⁻ , F ⁻ , NO ₃ ⁻ , SO ₄ ⁻²			

Multi-Cation Standards						
lons	Conc. (µg/mL)	Matrix	Product No.			
Multi-Cation Standard 1 - Volume 100mL		dil. HNO ₃	ICM5A-100			
Ca ⁺²	500					
K ⁺	500					
Li ⁺	50					
Mg ⁺² Na ⁺	250					
Na ⁺	200					
NH ₄ ⁺	250					

Wet Chemistry Standards

For Water Analysis

Standard Tests for W	aters			
Analyte	Concentration	Matrix	Size	Product No.
Biochemical Oxygen Demand (BOD)*	200mg/L	H ₂ O, tr. HCI	100mL	BOD200-100
Biochemical Oxygen Demand (BOD) Seeds	N/A	N/A	50 Capsules, 100mg each	BODSEED-50
Boron Titration Standard	1000mg/L	H ₂ O	500mL	B1K-500
Chemical Oxygen Demand (COD)	1000mg/L	H ₂ O, 0.5% H ₂ SO ₄	100mL	COD1K-100
Conductivity (from NaCl)	100µmho/cm 1000µmho/cm 10,000µmho/cm	H ₂ O	1 Liter	CONDNA100-1L CONDNA1K-1L CONDNA10K-1L
Cyanide, CN⁻ (from KCN)	1000mg/L	0.1% NaOH	100mL 500mL	CN-100 CN-500
Hydrazine, N ₂ H ₄ (from N ₂ H ₄ -2HCl)	100mg/L	1% Acetic Acid	100mL 500mL	IHYD100-100 IHYD100-500
	1000mg/L		100mL 500mL	IHYD1K-100 IHYD1K-500
Methylene Blue Active Substance (MBAS)	1000mg/L	H ₂ O, tr.H ₂ SO ₄	100mL	MBAS-100
Silica, SiO ₂	100mg/L	H ₂ O	500mL	ISIO2100-500
(from Na ₂ SiO ₃)	1000mg/L		100mL 500mL	ISIO21K-100 ISIO21K-500
Total Kjeldahl Nitrogen - TKN (from glycine)	1000mg/L	1% HCI	100mL 500mL	TOTKJN1K-100 TOTKJN1K-500
Total Organic Carbon -	100mg/L	H ₂ O	500mL	TOC100-500
TOC (from KHC ₈ H ₄ O ₄)	1000mg/L		100mL 500mL	TOC1K-100 TOC1K-500

^{*} CBOD value is also included on the Certificate of Analysis for BOD200-100

Section 2 Aqueous Standards

Single-Element Standards Ion Chromatography and Wet Chemistry Standards

- ► Ion Chromatography
- Wet Chemistry QC Checks for Water

Multi-Element Standards for ICP-AES and ICP-MS

VHG Tips

VHG Labs QC Check Samples are NIST-traceable and verified by an interlaboratory program. Laboratories using these products as part of their internal quality program can monitor their performance against both EPA acceptance criteria and results from other well-respected laboratories.

QC Reference Standards are useful as controls and/or to represent your real-world samples for method development.

WS and WP certified reference standards offer great values too! Many ship as concentrates in screw-topped vials, which can then be diluted to yield a liter or more. Exact directions are included on the Certificate of Analysis.

QC Check Samples for Water Supply

- Designed for analyses of drinking water, ground water, and clean surface water
- ◆ Tested in compliance with appropriate US EPA, NIST, NELAC, and ISO protocols
- Certificate of Analysis includes two sets of acceptance limits to evaluate your performance
- Traceable to NIST SRMs (whenever available)
- For use in analyzing alongside US EPA, NELAC or state accreditation PT samples or as part of your own internal quality control program

Water Supply (WS) Check Samples			
Product & Range	Vial Size	Yields	Product No.
WS Cyanide Total Cyanide: 0.1-0.5 mg/L	15mL	2 L	QWSCN-15
WS Inorganics Alkalinity as CaCO ₃ : 25-200mg/L Chloride: 5-100mg/L Fluoride: 1-8mg/L Nitrate as N: 3-10mg/L Nitrate + Nitrite, as N: 3.5-9mg/L Potassium: 10-40mg/L Specific Conductance at 25°C: 250-2500µmhos/cm Sulfate: 5-500mg/L Total Filterable Residue (TDS) at 180°C: 200-450mg/L	500mL	N/A	QWSIN-500
WS Hardness Calcium: 30-90mg/L Calcium Hardness as CaCO ₃ : 75-375mg/L Total Hardness as CaCO ₃ : 83-307mg/L Magnesium: 2-20mg/L Sodium: 12-24mg/L	250mL	N/A	QWSHRD-250
WS o-Phosphate Nutrients ortho-Phosphate as P: 0.5-5.5mg/L	15mL	2 L	QWSONUT-15
WS Nitrite Nitrite as N: 0.4-2mg/L	15mL	2 L	QWSNO2-15
WS pH pH: 5-10 units	250mL	N/A	QCPH-250
WS Residual Chlorine Total Residual Chlorine: 0.5-3mg/L Free Residual Chlorine: 0.5-3mg/L	2mL	2 L	QWSRCL-2
WS Solids Total Filterable Residue (TDS) at 180°C: 200-450mg/L Total Solids: 223-550mg/L Non-Filterable Residue (TSS) at 105°C: 23-100mg/L	23mL	1 L	QWSSOL-23
WS Organic Carbon Total Organic Carbon (TOC): 1.2-4.9mg/L Dissolved Organic Carbon (DOC): 1.2-4.9mg/L	15mL	1 L	QWSOC-15
WS Turbidity Turbidity: 0.5-8 NTU	15mL	1 L	QWSTURB-15

For Trace Metals Check Samples, see Page 55.

QC Check Samples for Water Pollution

- Designed for analyses of waste water, surface water, and contaminated ground water
- ◆ Tested in compliance with appropriate US EPA, NIST, NELAC, and ISO protocols
- Certificate of Analysis includes two sets of acceptance limits to evaluate your performance
- ◆ Traceable to NIST SRMs (whenever available)
- ◆ For use in analyzing alongside US EPA, NELAC or state accreditation PT samples or as part of your own internal quality control program

Water Pollution (WP) Check Samples			
Product & Range	Vial Size	Yields	Product No.
WP Cyanide Total Cyanide: 0.1-1mg/L	15mL	2 L	QWPCN-15
WP Demand 5-day BOD: 15-250mg/L Carbonaceous BOD: 15-250mg/L COD: 30-250mg/L TOC: 6-100mg/L	15mL	2 L	QWPDEM-15
WP Hexavalent Chromium Cr ⁺⁶ : 45-880µg/L	15mL	2 L	QWPCR6-15
WP Minerals Total Alkalinity as CaCO ₃ : 10-120mg/L Chloride: 35-275mg/L Fluoride: 0.3-4mg/L Potassium: 4-40mg/L Sodium: 6-100mg/L Specific Conductance at 25°C: 200-930µmhos/cr Sulfate: 5-125mg/L Total Dissolved Solids at 180°C: 140-650mg/L Total Solids at 105°C: 140-675mg/L	500mL m	N/A	QWPMIN-500
WP Hardness Calcium: 3.5-110mg/L Calcium Hardness as CaCO ₃ : 8.7-275mg/L Total Hardness as CaCO ₃ : 17-440mg/L Magnesium: 2-40mg/L Non-Filterable Residue (TSS): 23-100mg/L	500mL	N/A	QWPHRD-500
WP Simple Nutrients Ammonia as N: 0.65-19mg/L Nitrate as N: 0.25-40mg/L Nitrate + Nitrite, as N: 0.25-40mg/L ortho-Phosphate as P: 0.5-5.5mg/L	15mL	2 L	QWPSNUT-15
WP Complex Nutrients Total Kjeldahl Nitrogen as N: 1.5-35mg/L Total Phosphorus as P: 0.5-10mg/L	15mL	2 L	QWPCNUT-15
WP Oil and Grease Concentrate Oil and Grease: 20-100 mg/L	23mL	2 L	QWPOG-23
WP pH pH: 5-10 units	250mL	N/A	QCPH-250
WP Total Phenolics Total Phenolics by 4-AAP: 0.06-5mg/L	2mL	2 L	QWPPHEN-2
WP Total Residual Chlorine Total Residual Chlorine: 0.5-3mg/L	2mL	2 L	QWPRCL-2
WP Solids Concentrate Total Solids at 105°C: 140-675mg/L Total Dissolved Solids at 180°C: 140-650mg/L	23mL	1 L	QWPSOL-23

For Trace Metals Check Samples, see Page 55.

Non-Filterable Residue (TSS): 23-100mg/L

Section 2 Aqueous Standards

Single-Element Standards
Ion Chromatography and
Wet Chemistry Standards
Ion Chromatography
Wet Chemistry

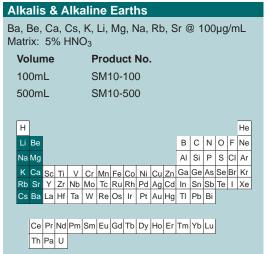
► QC Checks for Water
Multi-Element Standards for
ICP-AES and ICP-MS

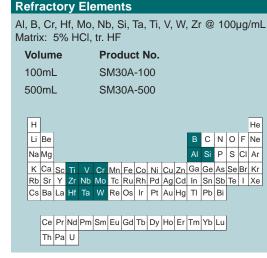
VHG Tips

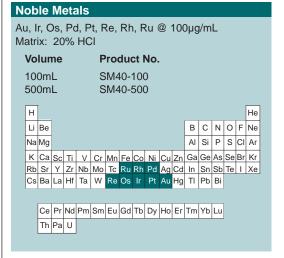
Ever encounter difficult samples or analysis that you can't perform? Consider using VHG's Analytical Services or Consultation Services Divisions. We're the only leading manufacturer of spectroscopic samples and supplies that also operates a commercial testing laboratory: Call 888.622.7660.

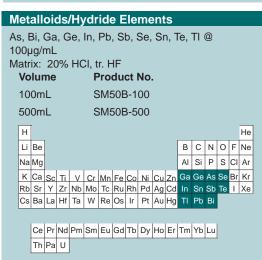
VHG multi-element standards are made from our A+ certified single-element standards which are certified by the NIST HP-ICP-AES Protocol (see Page 38).

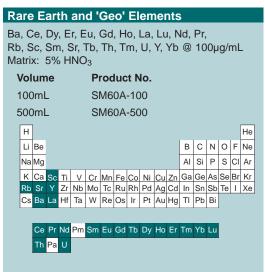
ICP-MS user note: Comprehensive Mix A and B can be combined for semi-quantitative analysis or as a control. Indium and ⁶Li can be added as internal standards (see Page 66).

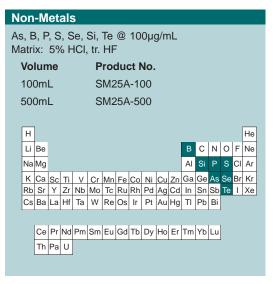


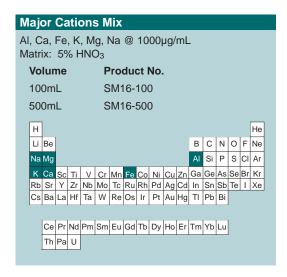

Multi-Element Standards

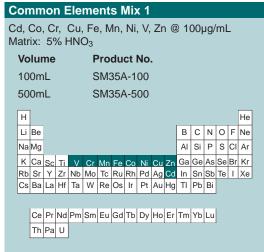

For Calibration or QC Controls of ICP-AES or ICP-MS

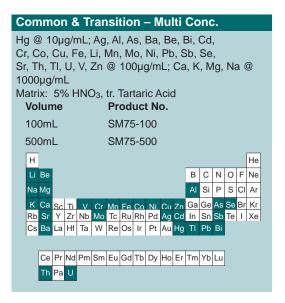

VHG's certified NIST-traceable multi-element mixes have elements conveniently grouped to provide nearly comprehensive coverage of the entire periodic table.


Multi-Element mixes that are associated with a method, such as EPA or ASTM, can be found later in this section. Our extensive quality control makes them the clear choice for value.








Multi-Element Standards

For Calibration or QC Controls of ICP-AES or ICP-MS

Common Elements Mix 2 Ag, Al, B, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Si, Sn, Ti, V, Zn @ 100µg/mL Matrix: 5% HNO₃, tr. HF Volume Product No. 100mL SM70B-100 500mL SM70B-500 н Li Be C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U

Comprehensive Mix A Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Dy, Er, Eu, Ga, Gd, Hg, Ho, La, Lu, Mg, Na, Nd, P, Pb, Pr, Rb, Sc, Se, Sm, Sr, Tb, Th, Tl, Tm, U, Y, Yb @ $10\mu g/mL$ Matrix: 40% aq. regia Volume Product No. 100mL SM80B-100 500mL SM80B-500 Н Li Be B C N O F Ne Al Si P S Cl Ar Na Mg K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U

Section 2 Aqueous Standards

Single-Element Standards
Ion Chromatography and
Wet Chemistry Standards
Multi-Element Standards 6

Multi-Element Standards for ICP-AES and ICP-MS

► Multi-Element

General Environmental Spiking Solutions Water Pollution Standards QC Check Samples for Water

QC Checks for Trace Metals International Environmental Standards

EPA Method Ref Chart Second Source (pairmatched) Standards EPA 200.7, 6010, CLP ICP-MS Standards EPA 200.8, 6020 CLP

VHG Tips

VHG's multi-element standards undergo extensive QC and are traceable to NIST SRMs. Not all suppliers make this important investment in quality.

Spikes of environmental samples with silver (Ag) are prone to poor recoveries due to AgCl precipitation. Free Cl can come from a nearby beaker of HCl or other volatile chlorides.

Remember to keep spiking levels within the calibration range. For "unknowns", the use of two spikes (estimated and of different concentration) may actually be the simplest way to hit a good target spike concentration.

General Use Environmental Standards

For Calibration, QC Controls or Spiking

VHG labs manufactures accurate, NIST-traceable standards for the analysis of environmental waters, soils, sludges and other samples by ICP-AES, ICP-MS, AA and other spectroscopic techniques.

We offer a range of pre-configured environmental standards that can be used for calibration, fortifying solutions, control checks and interference checks. While these standards may meet all of your requirements, VHG also specializes in NIST-traceable custom blends. Please inquire.

US EPA 23 Metals

Ва

Mg

Mn

Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Tl, V, Zn @ $100\mu g/mL$ Matrix: $5\%HNO_3$, tr. Tartaric Acid, tr. HF

Volume (mL)	Product No.
100	SM23-100
500	SM23-500

US EPA RCRA Elements

Ag, As, Ba, Cd, Cr, Hg, Pb, Se @ $100\mu g/mL$ Matrix: $5\%HNO_3$

 Volume (mL)
 Product No.

 100
 SM45-100

 500
 SM45-500

QC Standard '7' Matrix: 5% HNO ₃ , tr. F ⁻						
Volume (mL) Product No.						
100	QC7-	100				
500	500 QC7-500					
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)			
Ag	100	K	1000			
Al	100	Na	100			
В	100	Si	50			

100

100

100

QC Standard '7A' Matrix: 5% HNO ₃ , tr. F ⁻					
Volume (n	nL) Prod	uct No.			
100	QC7	4-100			
500	QC7	A-500			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)		
Ag	50	K	1000		
Al	100	Na	100		
В	100	Si	500		
Ва	100				

Matrix: 5% HNO₃, tr. F⁻, tr. Tartaric Acid

QC Standard '20'

Volume (mL)

QC Standard '19' Matrix: 5% HNO ₃ , tr. F ⁻ , tr. Tartaric Acid				
L) Prod	uct No.			
QC19	-100			
QC19	-500			
Conc. (µg/mL)	Element	Conc. (µg/mL)		
100	Мо	100		
100	Ni	100		
100	Pb	100		
100	Sb	100		
100	Se	100		
100	Ti	100		
100	TI	100		
100	V	100		
	Conc. (µg/mL) 100 100 100 100 100 100	NO ₃ , tr. F ⁻ , tr. Tartaric Acid L) Product No. QC19-100 QC19-500 Conc. (μg/mL) 100 Mo 100 Ni 100 Pb 100 Sb 100 Se 100 Ti 100 TI		

Zn

100

	-,		
100	ISQC	20-100	
500	ISQC	20-500	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ag	10	Мо	10
Al	10	Ni	10
As	10	Pb	10
Ва	10	Sb	10
Be	10	Se	10
Cd	10	Th	10
Co	10	TI	10
Cr	10	U	10
Cu	10	V	10
Mn	10	Zn	10

Product No.

Second Source: QC Standard '20' is prepared from independent raw materials relative to any VHG single element or multi-element standard except those designated as second source standards.

General Use Environmental Standards

For Calibration, QC Controls or Spiking

TCLP

TCLP Standard 1 Matrix: 2% HNO ₃				
Volume (mL)	Prod	duct No.		
100	TCL	P1-100		
500	TCL	P1-500		
Element	Conc.	Element	Conc.	
Liement	(µg/mL)	Liement	(μg/mL)	
Ag		Cr		
	(µg/mL)		(µg/mL)	
Ag	(μg/mL) 25	Cr	(μg/mL) 25	

See Mercury Standard 20 listed below

General Memory & Interference Check Sample

Environmental Sample Interferents Matrix: 2% HNO ₃			ts
Volume (mL)	Pro	duct No.	
500	LMC	S1Z-500	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Al	1000	K	1000
С	5000	Mg	1000
Ca	1000	Na	1000
CI	5000	Р	1000
Fe	1000	S	1000

Spiking Solutions

Waters - Trace Elements

Sniking Solution FG	

Volume (mL)

Dilute as needed; configured for use with Environmental Waters

Product No.

Matrix: 5% HNO₃, tr. HF, tr. Tartaric Acid

· · · · · · · · · · · · · · · · · · ·			
100	SSEG1-100		
500	SSEG1-500		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ag	5	Mn	40
Al	100	Мо	40
As	200	Ni	40
Ва	200	Pb	40
Ве	5	Sb	40
Cd	5	Se	100
Co	20	SiO ₂	200
Cr	40	TI	40
Cu	40	V	40
Fe	100	Zn	100

Soils

Spiking Solution EG2

Volume (mL)

Dilute as needed; configured for use with Environmental Soils
Matrix: 5% HNO₃, tr. HF, tr. Tartaric Acid

volume (mil)	1100	auct No.	
100	SSE	G2-100	
500	SSE	G2-500	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ag	25	Mn	200
Al	2000	Мо	200
As	1000	Ni	200
Ва	1000	Pb	200
Ве	25	Sb	200
Cd	25	Se	1000
Co	100	TI	200
Cr	200	V	200
Cu	200	Zn	500
Fe	2000		

Product No.

See Page 64 for additional Spiking Standards for EPA Methods

Waters - Major Elements

Spiking Solution EG3

Dilute as needed; configured for use with Environmental Waters

Matrix: 5% HNO₃

volume (mL)	Proc	duct No.		
100	SSE	SSEG3-100		
500	SSEG3-500			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
В	1000	Mg	10,000	
Ca	10,000	Na	10,000	
K	10,000	Р	1000	
Li	1000	Sr	1000	

Mercury Standard 20 Matrix: 5% HNO ₃		
Volume (mL)	Product No.	
100	HG20-100	
Element	Conc. (µg/mL)	
Hg	20	

Section 2 Aqueous Standards

Single-Element Standards Ion Chromatography and Wet Chemistry Standards

Multi-Element Standards for ICP-AES and ICP-MS

Multi-Element

- ► General Environmental
- ► Spiking Solutions

Water Pollution Standards QC Check Samples for Water

QC Checks for Trace Metals International Environmental Standards

EPA Method Ref Chart Second Source (pairmatched) Standards EPA 200.7, 6010, CLP ICP-MS Standards EPA 200.8, 6020 CLP

VHG Tips

See Pages 48-49 for QC Check Samples for Wet Chemistry Methods such as Water Supply Hardness and Water Pollution Minerals.

VHG Labs QC Check Samples are NIST traceable and verified by an interlaboratory program. Laboratories using these products as part of their internal quality program can monitor their performance against both EPA acceptance criteria and results from other well-respected laboratories.

QC Reference Standards are useful as controls and/or to represent your real-world samples for method development.

Water Pollution Standards

US EPA Standards for Clean Water Act

Water Pollution Standard 1 Matrix: 5% HNO ₃				
Volume (mL)	Proc	duct No.		
100	WPS	S1-100		
500	WPS	S1-500		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Al	500	Hg	5	
As	100	Mn	100	
Be	100	Ni	100	
Cd	25	Pb	100	
Со	100	Se	25	
Cr	100	V	250	
Cu	100	Zn	100	
Fe	100			

Water Pollution Standard 3 Matrix: 2% HNO ₃				
Volume (mL)	Proc	duct No.		
100	WPS	S3-100		
500	WPS	S3-500		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Ва	500	Mg	100	
Ca	500	Мо	500	
K	100	Na	500	

Water Pollution Standard 5 Matrix: 2% HNO ₃				
Volume (mL)	Product No.			
100	WPS5-100			
500	WPS5-500			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Ca	500	Mg	100	
Na	500	K	100	

Synthetic Surface Water Certified Reference Material

- Metals in water matrix representative of typical natural water sample
- Certified by an inter-laboratory study
- Excellent control sample for environmental testing

Natural Water Matrix Reference Matrix: 1% HNO ₃ , 1% HCl, tr HF, tr Tartaric Acid					
Volume (r	nL) Prod	luct No.			
100	NWI	/IR-100			
500	NWI	ЛR-500			
Element	Conc. Range (µg/mL)	Element	Conc. Range (µg/mL)		
Ag	0.005-0.05	Мо	0.005-0.05		
Al	0.05-0.25	Na	10-25		
As	0.005-0.05	Ni	0.005-0.05		
Ва	0.05-0.25	Pb	0.005-0.05		
Ве	0.005-0.05	Rb	0.005-0.05		
Ca	10-25	Sb	0.005-0.05		
Cd	0.005-0.05	Se	0.005-0.05		
Co	0.005-0.05	Sn	0.005-0.05		
Cr	0.005-0.05	Sr	0.05-0.25		
Cu	0.05-0.25	Ti	0.005-0.05		
Fe	0.05-0.25	TI	0.005-0.05		
K	0.5-3	U	0.005-0.05		
Mg	1-10	V	0.005-0.05		
Mn	0.005-0.05	Zn	0.05-0.25		

QC Check Samples for Trace Metals

WS and WP Concentrates

- Designed for analyses of water supply and water pollution samples
- ◆ Tested in compliance with appropriate US EPA, NIST, NELAC, and ISO protocols
- Certificate of Analysis includes two sets of acceptance limits to evaluate your performance
- Traceable to NIST SRMs (whenever available)
- For use in analyzing alongside US EPA, NELAC or state accreditation PT samples or as part of your own internal quality control program

Water Supply (WS) Samples				
Product & Range	Vial Size	Yields	Product No.	
WS Trace Metals Aluminum AI: 130-2500μg/L Antimony Sb: 6-50μg/L Arsenic As: 5-50μg/L Barium Ba: 500-3000μg/L Beryllium Be: 1-10μg/L Boron B: 800-2000μg/L Cadmium Cd: 2-50μg/L Chromium Cr: 10-200μg/L Copper Cu: 50-2000μg/L Iron Fe: 100-1800μg/L Lead Pb: 5-100μg/L Manganese Mn: 40-900μg/L Molybdenum Mo: 15-130μg/L Nickel Ni: 10-500μg/L Selenium Se: 10-100μg/L Silver Ag: 20-300μg/L Thallium TI: 2-10μg/L Vanadium V: 315-2500μg/L Zinc Zn: 400-2500μg/L	15mL	2 L	QWSTM-15	
WS Mercury Total Mercury: 0.5-10μg/L	15mL	1 L	QWSHG-15	

Product & Range	Vial Size	Yields	Product No.	
WP Trace Metals Aluminum Al: 200-4000µg/L Antimony Sb: 95-900µg/L Arsenic As: 70-900µg/L Barium Ba: 100-2500µg/L Beryllium Be: 8-900µg/L Boron Be: 800-2000µg/L Cadmium Cd: 8-750 µg/L Chromium Cr: 17-1000µg/L Cobalt Co: 28-1000µg/L Copper Cu: 40-900µg/L Iron Fe: 200-4000µg/L Lead Pb: 70-3000µg/L Manganese Mn: 70-4000µg/L Molybdenum Mo: 60-600µg/L Nickel Ni: 80-3000µg/L Selenium Se: 90-2000µg/L Silver Ag: 26-600µg/L Strontium Sr: 30-300µg/L Thallium Tl: 60-900µg/L Vanadium V: 55-2000µg/L Zinc Zn: 100-2000µg/L	15mL	1 L	QWPTM-15	
WP Mercury Total Mercury: 2-30µg/L	15mL	1 L	QWPHG-15	
WP Tin & Titanium Tin Sn: 1000-5000μg/L Titanium Ti: 80-300μg/L	15mL	1 L	QWPSNTI-15	

Section 2 Aqueous Standards

Single-Element Standards Ion Chromatography and Wet Chemistry Standards

Multi-Element Standards for ICP-AES and ICP-MS

Multi-Element General Environmental Spiking Solutions

- ► Water Pollution Standards
- ▶ QC Check Samples for Water
- ▶ QC Checks for Trace Metals International Environmental Standards EPA Method Ref Chart Second Source (pairmatched) Standards EPA 200.7, 6010, CLP ICP-MS Standards EPA 200.8, 6020 CLP

International Environmental Standards

Canadian Regulated Inorganics

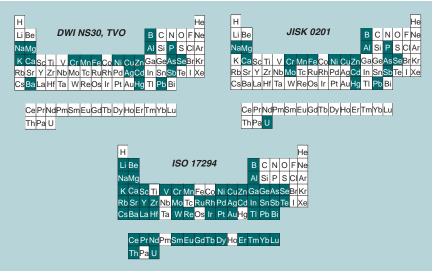
Regmet Standard 1 Matrix: 5% HNO ₃					
Volume (r	nL) Pro	duct No.			
100	RMS	S1Z-100			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)		
Ag	100	Mn	100		
As	100	Ni	100		
В	100	Р	100		
Ва	100	Pb	100		
Ве	100	Rb	100		
Ca	100	Se	100		
Cd	100	Sr	100		
Со	100	Th	100		
Cr	100	TI	100		
Cu	100	V	100		
Mg	100	Zn	100		

U. S. Environmental Protection Agency (EPA) methods and guidelines have widespread application both inside and outside the U.S. Other governmental organizations have also established guidelines, each with unique listings of monitored elements and quality control criteria.

Europe

UK "DWI NS30" program standards prevail and these are similar to German "TVO" standards. They establish a "Prescribed Concentration Value" for regulated metals in the environment.

Also, a central European standard in the International Organization of Standards (ISO), has ICP-MS specified for the monitoring of over 60 metals.


Regmet Standard 2 Matrix: 20% HCI, tr. HF					
Volume (mL) Product No.					
100	RM	S2Z-100			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)		
Al	100	Si	100		
Fe	100	Sn	100		
K	100	Ti	100		
Мо	100	U	100		
Na	100	Zr	100		
Sb	100				

Mercury Standard 10 Matrix: 5% HNO ₃				
Volume (m	L)	Product No.		
100		LHGN-100		
Element	Cond (µg/n			
Hg	10			

Japan & Asia

The "JISK0102" method has been created for environmental metal monitoring.

VHG has numerous standards that are useful calibration standards for these analyses. Try our "Common & Transition Elements" that contain the DWI, TVO and JISK element listings (see Page 51). For more comprehensive multi-element mixes, VHG's "Comprehensive Mix A" and "Comprehensive Mix B" will meet the need.

The shaded periodic tables show regulated metals under some of these guidelines.

EPA Method Standards Cross Reference Chart

Also Good for General Sample Sequencing

Section 2 Aqueous Standards

Description: Purpose	Number	Sample Acronym	Name	200.7 ICP-AES	200.8 ICP-MS	CLP6010 (ILM 05.2)	CLP6020 (ILM 05.2)	AA, Hg, Cr VI use same general CLP seq.
optimization block	1	Set-up Sample	Tuning, mass cal., detector cal., wave- length cal.	For listings of 67-68	of these standa	ards and mixe	s, refer to pgs.	60, 65-66,
calibration block	2	Calib. Blank	Blank	Remember: (See pgs. 62		ards need to b	e included in l	blanks
calibration block	3	Calib. Grp A Std 1	Quant Std		Extensive list o		ion standards	or our
calibration block	4	Calib. Grp A Std "n"	Quant Std		Extensive list o ti-Element Sta		ion standards	or our
calibration block	5	(optnlCalib. "Grp B" Stds)	Quant Std	(Use if eleme or convenier	ents isolated ir nce reasons.)	n separate solu	ıtions. May be	useful for stability
calibration check	7	Initial Calib. Verif. Grp A (ICV, IPC)	QC	Refer to Cata Element or N	alog pgs. 58-5 //ulti-Element	9, 61-62, 69 o Standards.	r VHG's Exten	sive List of Single-
calibration check	8	(optnl. ICV for "Grp B")	QC	(If elements convenience		oarate solution	s. May be use	ful for stability or
calibration check	9	ICB	QC	Remember:	Blank prepara	ntion should ma	atch those for	standards
interference check	10	ICS-A (SIC)	QC	ICS solns (see p. 61)		ICSA (see p. 63)	ICSA (see p. 71)	
interference check	11	ICS-AB (SIC)	QC			ICSAB (see p. 63)	ICSAB (see p. 71)	
interference mem. check	12	Memory Check, MEM	QC	Refer to Method			Refer to Meth (see p. 71)	
detn. limit test	13	(CRQL,CRI, MDL, CRDL)	QC	Refer to Method	Refer to Method	(See p. 64)	Refer to Meth (see p. 70)	Refer to Method.
blank background	14	Reagent Blk (LRB)	QC	Remember:	Blank prepara	tion should ma	atch those for	standards
spike recovery in Blank	15	Reagent Blk Spk (LFB)	QC	Refer to pgs. Multi-Elemer		VHG's Extens	sive List of Sin	gle Element or
accuracy	16	(QCS, LCS)	QC	Use VHG's (Quality Contro	l Reference St	andards, pgs.	52, 54-55, 61
begin sample block	17	Sample 1	Sample Unknown	Measuremer				
spike recovery in Blank	18	Sample 1 SPK (LFM)	QC	For Spiking S VHG's Multi-	Standards refe Element Stan	er to pgs. 53, 6 dards.	4, 70 or	
calibration verification	19	CCV Grp A-1	QC		Extensive list o		ion standards	or our
calibration verification	20	(optCCV Grp B-1)	QC	See #8 Above	е			
blank verification	21	CCB-1	QC	See #2 Above				
continue sample block	22	Sample 2	Sample Unknown	CCV/CCB b	lock)	ple 2 -> n may	possibly be p	rior to first
continue sample block	23	Sample 2 Duplicate	QC	Refer to Met				
continue sample block	24	Sample 2 Dilution	QC	Refer to Met	thod			
continue sample block	25->	Samplesn	Sample Unknowns	Measureme	nt Data			
calibration verification	Х	CCV Grp A-2	QC	See #19 Abo	ove			
calibration verification	Х	(optnlCCV Grp B-2)	QC	See #8 Abov	/e			
blank verification	х	CCB-2	QC	See #2 Abov	/e			
POST RUN QC	Х	see method	QC	Refer to Met				

^{*}Refer to method documentation for elaboration of sample sequence requirements. Grey block signifies that this test block may not exist in method

VHG Tips

We recommend you use a QC Check Sample or other labratory control standard with each analytical run.

Second Source Standards Pair-Matched

The following VHG's Standards are pair-matched (by element) with one being 100% independent of the other. These are designed for CAL and ICV or LCS checks. All VHG second source standards are prepared from independent raw materials relative to any VHG single element or multi-element standard except those designated as second source standards.

Primary Standards

Volume (ml.)

Second Source Standards

QC Standard '21'			←1	ISQC Standard '21'					
Matrix: 5% HI	NO ₃ , tr. F ⁻ , tr.	Tartaric Acid		` '	4 /	Matrix: 59	% HNO ₃ , tr.	F ⁻ , tr. Tartari	c Acid
Volume (mL)	Prod	uct No.			Volu	ıme (mL)	Proc	luct No.	
100	QC	21-100			100		ISQ	C21-100	
500	QC	21-500			500		ISQ	C21-500	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL	.)	Elen	nent	Conc. (µg/mL)	Element	Conc. (µg/mL)
As	100	Мо	100		As		100	Мо	100
Be	100	Ni	100		Be		100	Ni	100
Ca	100	Pb	100		Ca		100	Pb	100
Cd	100	Sb	100		Cd		100	Sb	100
Со	100	Se	100		Co		100	Se	100
Cr	100	Sr	100		Cr		100	Sr	100
Cu	100	Ti	100		Cu		100	Ti	100
Fe	100	TI	100		Fe		100	TI	100
Li	100	V	100		Li		100	V	100
Mg	100	Zn	100		Mg		100	Zn	100
Mn	100				Mn		100		

Major Elements Standards Matrix: 5% HNO₃ Matrix: 5% HNO₃

volume (mil)	1100	auct No.	
100	LME	S-100	
500	LME	S-500	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ca	2000	Mg	2000
Fe	2000	Na	2000
K	2000		_

Product No.

Volume (mL)	Prod	Product No.				
100	LIC	LICVMES-100				
500	LIC	LICVMES-500				
Element	Conc.	Element	Conc.			
-	(µg/mL)		(µg/mL)			
Ca	(μg/mL) 2000	Mg	(μ g/mL) 2000			
Ca Fe		Mg Na				

Mercury Standard 10 Matrix: 5% HNO ₃		←1	←1 2→ Mercury ICV Standard Matrix: 5% HNO ₃		
Volume (mL)	Product No.		Volume (mL)	Product No.	
100	LHGN-100		100	ISHG-100	
Element	Conc. (µg/mL)		Element	Conc. (µg/mL)	
Hg	10		Hg	10	

VHG Labs carries the most extensive line of "second source" (independent) standards. If we don't already have the mixture you need, call us and we will prepare a custom-spec standard from an independent lot.

Second Source Standards Pair-Matched

Primary Standards

Second Source Standards

Environmental ICV Standard A

		ation Standa taric Acid, tr. Hf		←1	
Volume (mL)	Pro	Product No.			
100	LCA	AL1A-100			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL	_)	
Ag	10	Mn	10		
Al	10	Мо	10		
As	10	Na	1000		
Ва	10	Ni	10		
Be	10	Pb	10		
Ca	1000	Sb	10		
Cd	10	Se	10		
Со	10	Sr	10		
Cr	10	Ti	10		
Cu	10	TI	10		
Fe	1000	U	10		
K	1000	V	10		
Mg	1000	Zn	10		

<u>_</u>	Matrix: 5%	% HNO ₃ , tr.	Tartaric Acid, tr.	HF
	Volume (mL)	Pro	duct No.	
	100 LICV1A-100			
	Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
	Ag	10	Mn	10
	Al	10	Мо	10
	As	10	Na	1000
	Ва	10	Ni	10
	Ве	10	Pb	10
	Ca	1000	Sb	10
	Cd	10	Se	10
	Co	10	Sr	10
	Cr	10	Ti	10
	Cu	10	TI	10
	Fe	1000	U	10
	K	1000	V	10

200.8 Stock Calibration Standard CS1

Matrix: 5% HNO₃, tr. Tartaric Acid

Volume (mL)	Product No.		
100	L2008CS1-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Al	10	Ni	10
As	10	Pb	10
Be	10	Sb	10
Cd	10	Se	10
Со	10	TI	10
Cr	10	Th	10
Mn	10	U	10

200.8 Stock Cal	ibration Standard SQC1
Maria FOLLINIO	to Table da Andal

10

Matrix: 5% HNO₃, tr. Tartaric Acid Volume (mL) Product No.

1000

roranio (iii=)	amo (mz)			
100	L2008SQC1-100			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Al	10	Ni	10	
As	10	Pb	10	
Ве	10	Sb	10	
Cd	10	Se	10	
Co	10	TI	10	
Cr	10	Th	10	
Mn	10	U	10	
Мо	10	V	10	
Be Cd Co Cr Mn	10 10 10 10 10	Sb Se TI Th	10 10 10 10 10	

200.8 Stock Calibration Standard CS2Matrix: 2% HNO₃

10

Mo

←1 2→

10

Mg

2->

200.8 Stock Calibration Standard SQC2 Matrix: 2% HNO₃

Volume (mL)	Product No.			
100	L200	L2008CS2-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Ag	10	Fe	100	
Ва	100	Zn	100	
Cu	100			

Volume (mL)	Product No.		
100	L2008SQC2-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ag	10	Fe	100
Ва	100	Zn	100
Cu	100		_

200.8 Stock Calibration Standard CS3Matrix: 2% HNO₃

←1|2→

200.8 Stock Calibration Standard SQC3Matrix: 2% HNO₃

Volume (mL)	Product No.			
100	L200	L2008CS3-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Ca	10,000	Mg	1000	
K	1000	Na	10,000	

volume (mL)	Proc	JUCT NO.	
100	L2008SQC3-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ca	10,000	Mg	1000
K	1000	Na	10,000

Section 2 Aqueous Standards

Single-Element Standards Ion Chromatography and Wet Chemistry Standards

Multi-Element Standards for ICP-AES and ICP-MS

Multi-Element
General Environmental
Spiking Solutions
Water Pollution Standards
QC Check Samples for
Water
QC Checks for Trace Metals

International Environmental
Standards

EPA Method Ref Chart

 Second Source (pairmatched) Standards
 EPA 200.7, 6010, CLP
 ICP-MS Standards
 EPA 200.8, 6020 CLP

EPA Methods 200.7 & 6010A for ICP-AES

Tuning/Optimization

US EPA Method 200.7 ICP Tuning Matrix: 5% HNO ₃					
Volume (mL)	Proc	luct No.			
100	TNG-100				
500	TNG	-500			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)		
Cu	10	Pb	10		

US EPA Method 200.7 ICP Plasma Solution Matrix: 5% HNO₃

Volume (mL)	Product No.		
100	PLS-	PLS-100	
500	PLS-	PLS-500	
Element	Conc. Element (µg/mL)		Conc.
Element		Element	(μg/mL)
As		Se	

Mixed Calibration Standards 200.7 Rev. 4.4

Calibration Standard 1 Matrix: 5% HNO ₃					
Volume (mL) Product No.					
100	440	S1Y-100			
500	440	S1Y-500			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)		
Ag	50	K	1000		
As	500	Mg	1000		
В	200	Mn	200		
Ва	200	Ni	200		
Ве	200	Р	1000		
Ca	1000	Pb	200		
Cd	200	Se	500		
Се	200	Sr	200		
Со	200	TI	500		
Cr	200	V	200		
Cu	200	Zn	500		

Calibration Standard 2 Matrix: 20% HCl, tr. HF					
Volume (mL)	Volume (mL) Product No.				
100	44C	44CS2Z-100			
500	44C	S2Z-500			
Element	Conc. Element Conc.				
	(µg/mL)		(µg/mL)		
Al	1000	Sb	500		
Fe	1000	SiO ₂	1000		
Li	500	Sn	200		
Мо	1000	Ti	1000		
Na	1000				

Mixed Calibration Standards 200.7 Rev. 3.3, 6010A

Mixed Calibration Standard 2

Matrix: 2% HNO ₃			
Volume (mL)	Product No.		
100	MCS1-100		
Element	Conc.	Element	Conc.
	(µg/mL)		(µg/mL)
Be	(μg/mL) 50	Pb	(μg/mL) 500
Be Cd		Pb Se	

Matrix: 5%	HNO3			
Volume (ml	_) Pro	Product No.		
100	MCS2-100			
Element	Conc.	Element	Conc.	
	((/mal)	
	(µg/mL)		(µg/mL)	
Ba	(μg/mL) 100	Fe	10,000	
Ba Co		Fe V		

Mixed Cali Matrix: 2%	i bration Sta HNO3, tr. F ⁻	ndard 3	
Volume (ml	_) Pro	duct No.	
100	MCS	S3-100	
	0	I =1	Conc.
Element	Conc. (µg/mL)	Element	(µg/mL)
As		Si	• • • • • • • • • • • • • • • • • • • •

Mixed Calibration Standard 4 Matrix: 5% HNO ₃			
Volume (mL)	Product No.		
100	MCS		
Element	Conc.	Element	Conc.
	(ualml)		//mal \
	(µg/mL)		(µg/mL)
Al	200	K	(μg/mL) 400
Al Ca		K Na	
	200		400

	libration Sta HNO3, tr. Tart			
Volume (mL) Product No.				
100	100 MCS5-100			
Element	Conc.	Element	Conc.	
	(µg/mL)		(µg/mL)	
	(µg/IIIL)		(Ma,=)	
Ag	50	Sb	200	
Ag B		Sb TI		

EPA Methods 200.7 & 6010 for ICP-AES

Interference Checks

Interference Check Solution 1 Matrix: 5% HNO ₃			
Volume (mL)	Product No.		
100	INT	INT1-100	
500	INT′	1-500	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ag	300	K	20,000
As	1000	Mn	200
Ва	300	Ni	300
Be	100	Pb	1000
Cd	300	Se	500
Co	300	TI	1000
Cr	300	V	300
Cu	300	Zn	300
Hg	50		

Interferenc Matrix: 2% H		olution 2		
Volume (mL) Product No.				
100	INT2	INT2-100		
500	INT2	2-500		
Element	Conc. Element Conc. (μg/mL)			
В	500	Si	230	
Мо	300	Ti	1000	

	e Check Solution 3 Tartaric Acid, tr. HNO ₃
Volume (mL)	Product No.
100	INT3-100
500	INT3-500
Element	Conc. (µg/mL)
Sb	1000

Interference Check Solution 4 Matrix: 5% HNO ₃			
Volume (mL)	Product No.		
100	INT4	INT4-100	
500	INT4-500		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Al	•••••	Element Mg	000.
	(µg/mL)		(µg/mL)

QCS Solution 2 Matrix: 20% HCl, tr. HF				
Volume (mL)	Product No.			
100	44Q	44QCS2Z-100		
500	44Q	44QCS2Z-500		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Al	100	Na	100	
Fe	100	Sb	100	
K	100	SiO ₂	100	
Li	100	Sn	100	
Мо	100	Ti	100	

Instrument Performance Checks

IPC Solution 1 Matrix: 5% HNO ₃				
Volume (mL) Product No.				
100	IPC	IPC1Y-100		
500	IPC	1Y-500		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Ag	20	K	500	
As	100	Mg	100	
В	100	Mn	100	
Ва	100	Ni	100	
Be	100	Р	500	
Ca	100	Pb	100	
Cd	100	Se	100	
Ce	100	Sr	100	
Со	100	TI	100	
Cr	100	V	100	
Cu	100	Zn	100	

IPC Solution 2 Matrix: 20% HCl, tr. HF				
Volume (mL)	Pro	Product No.		
100	IPC	IPC2Y-100		
500	IPC	2Y-500		
Element	Conc.	Element	Conc.	
	(µg/mL)		(µg/mL)	
Al	100	Na	100	
Fe	100	Sb	100	
Hg	100	SiO ₂	500	
Li	100	Sn	100	
Mo	100	Ti	100	

Quality Control QCS Solution 1

Matrix: 5% HNO ₃			
Volume (mL)	Pro	duct No.	
100	44Q	CS1Z-100	
500	44Q	CS1Z-500	
Element	Conc.	Element	Conc.
	(µg/mL)		(µg/mL)
Ag	50	Hg	100
As	100	Mg	100
В	100	Mn	100
Ва	100	Ni	100
Be	100	Р	100
Ca	100	Pb	100
Cd	100	Se	100
Ce	100	Sr	100
Co	100	TI	100
Cr	100	V	100
Cu	100	Zn	100

Section 2 Aqueous Standards

Single-Element Standards Ion Chromatography and Wet Chemistry Standards

Multi-Element Standards for ICP-AES and ICP-MS

Multi-Element
General Environmental
Spiking Solutions
Water Pollution Standards
QC Check Samples for
Water

QC Checks for Trace Metals International Environmental Standards

EPA Method Ref Chart Second Source (pairmatched) Standards

► EPA 200.7, 6010, CLP ICP-MS Standards EPA 200.8, 6020 CLP

VHG Tips

US EPA CLP standards ICL1 & ICL2, ICV1 & ICV2, and CCV1 & CCV2 are generally mixed and diluted as follows: To a 100mL volumetric flask containing 5mL concentrated HCl and 1mL concentrated HNO₃, aliquot 1mL each of Solutions 1 & 2. Swirl to effect complexation and dilute to 100mL with D.I. water. Hg can be added as required.

EPA Methods 6010 & CLP for ICP-AES

- VHG Labs has manufactured reliable standards for US EPA Methods since 1984.
- Full coverage of method-specified standards, controls and spikes.
- Standards are manufactured in our ISO 9001 and ISO Guide 34 facility.
- Certificate of Analysis from our ISO/IEC 17025 laboratory provided, showing NIST traceability.

US EPA Methods: Acid Matrix/Blank Solutions

Blank Water and Acid Matrices

ASTM Type I water and Trace Metal Grade acids used. HDPE bottles are acid leached and rinsed with DI water. **Volume: 500 mL**

Name	Matrix	Product No.
Nitric Acid Blank	5% HNO ₃	HNO3-BLK-500
Hydrochloric Acid Blank	5% HCI	HCL-BLK-500
Hydrochloric/Nitric Blank	5% HCI, 1% HNO ₃	ICB/CCB-500

Volume (mL)

Volume (mL)

CLP Instrument Calibration Standards - ICAL

Instrument Calibration Standard 1 Matrix: 5% HNO₃

Volume (mL)

Cu

Volume (mL)

100	ICL1			
500	ICL1	ICL1-500		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Ag	200	Fe	1000	
Ва	1000	Mn	1000	
Ве	400	Ni	1000	
Cd	500	Pb	1000	
Со	1000	TI	1000	

Zn

Product No.

1000

Product No.

Instrument Calibration Standard 2 Matrix: 20% HCI

1000

, , , , , , , , , , , , , , , , , , , ,			
100	ICL2-100		
500	ICL2		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Al	1000	Mg	10,000
As	1000	Na	10,000
Ca	10,000	Sb	1000
Cr	1000	Se	1000
K	10.000	V	1000

Mercury Standard 10

Matrix. 3/011	Matrix. 378 FinO3		
Volume (mL)	Product No.		
100	LHGN-100		
Element	Conc. (µg/mL)		
Hg	10		

CLP Initial Calibration Verification Standards - ICV (Second Source)

Initial Calibration Verification Standard 1 Matrix: 5% HNO₃

100	ICV		
500	ICV	1-500	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ag	20	Fe	100
Ва	100	Mn	100
Ве	40	Ni	100
Cd	50	Pb	100
Со	100	TI	100
Cu	100	Zn	100

Product No.

Initial Calibration Verification Standard 2 Matrix: 20% HCI

100	ICV2-100 ICV2-500		
500			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Al	100	Mg	1000
As	100	Na	1000
Ca	1000	Sb	100
Cr	100	Se	100
K	1000	V	100

Product No.

Mercury ICV Standard 10 Matrix: 5% HNO₃

Volume (mL)	Product No.	
100	ISHG-100	
Element	Conc.	
	(µg/mL)	
На	10	

Second Source: ICV1 & ICV2 and ISHG are prepared from independent raw materials relative to any VHG single element or multi-element standard except those designated as second source standards.

EPA Methods 6010 & CLP for ICP-AES

CLP Interference Checks - ICS

ICS Analytes B

ICS Analytes Sub-B1

ICS Interference A Matrix: 20% HCI Volume (mL) Product No. 500 ICSA-500 **Element Element** Conc. Conc. (µg/mL) (µg/mL) ΑI 5000 Fe 2000 Ca 5000 Mg 5000

Matrix: 5% HNO _{3, tr.} Tartaric Acid				
Volume (mL)		duct No.		
100	4ICS	SAB-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Ag	20	Mn	50	
As	10	Ni	100	
Ва	50	Pb	5	
Ве	50	Sb	60	
Cd	100	Se	5	
Co	50	TI	10	
Cr	50	V	50	
Cu	50	Zn	100	

Matrix: 5% Hi	VO 3		
Volume (mL)	Proc	luct No.	
100	ICSA	AB1-100	
500	ICS/	AB1-500	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ag	100	Mn	50
Be	50	Ni	100
Cd	100	Pb	100
Co	50	Zn	100
Cu	50		

For ICP-AES Matrix: 20%	CLP		
Volume (mL) Prod	luct No.	
100	ICSA	AB2-100	
500	ICSA	AB2-500	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ва	50	V	50
Cr	50		

CLP Continuing Calibration Verification - CCV

Continuing Calibration Verification Std. 1 Matrix: 5% HNO ₃				
Volume (mL)	Prod	luct No.		
100	CCV	1-100		
500	CCV	1-500		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Ag	100	Fe	500	
Ва	500	Mn	500	
Be	200	Ni	500	
Cd	250	Pb	500	
Co	500	TI	500	
Cu	500	Zn	500	

Volume (mL)	Proc	luct No.	
100	CCV	2-100	
500	CCV	2-500	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Al	500	Mg	5000
As	500	Na	5000
Ca	5000	Sb	500
Cr	500	Se	500
K	5000	V	500

Section 2 Aqueous Standards

Single-Element Standards Ion Chromatography and Wet Chemistry Standards

Multi-Element Standards for ICP-AES and ICP-MS

Multi-Element
General Environmental
Spiking Solutions
Water Pollution Standards
QC Check Samples for
Water

QC Checks for Trace Metals International Environmental Standards

EPA Method Ref Chart Second Source (pairmatched) Standards

► EPA 200.7, 6010, CLP ICP-MS Standards EPA 200.8, 6020 CLP

EPA Methods 6010 & CLP for ICP-AES

CLP Contract Required Detection Limit – CRDL

CRDL Solution 1 Matrix: 5% HNO ₃ , tr. tartaric acid				
Volume (mL)	Prod	uct No.		
100	CRD	L-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Ag	20	Ni	80	
As	20	Pb	6	
Ве	10	Sb	120	
Cd	10	Se	10	
Со	100	TI	20	
Cr	20	V	100	
Cu	50	Zn	40	
Mn	30			

CLP ILM05.2 Contract Required Quantitation Limit for Water and Soil

ICP-AES CRQL Solution 1 Matrix: 5% HNO ₃ , tr. tartaric acid				
Volume (mL) Pro	duct No.		
100	CRO	QL1AES-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Ag	10	Fe	100	
Al	200	Mn	15	
As	15	Ni	40	
Ва	200	Pb	10	
Ве	5	Sb	60	
Cd	5	Se	35	
Со	50	TI	25	
Cr	10	V	50	
Cu	25	Zn	60	

Matrix: 5% H		on 2	
Volume (mL)	Pro	duct No.	
100	CRO	L2AES-100	
500	CRO	L2AES-500	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ca	5000	Mg	5000
K	5000	Na	5000
Mercury Sta Matrix: 5% H			
Volume (mL)	Pro	duct No.	
100	HG2	20-100	
Element	Conc. (µg/mL)		
Hg	20		

ICD AES CROL Solution 2

CLP Spiking Solutions

CLP Spiking Matrix: 5% H		1	
Volume (mL)	Proc	duct No.	
100	W1-	100	
500	W1-	500	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ag	5	Mn	50
Ве	5	Ni	50
Cd	5	Pb	50
Co	50	TI	200
Cu	25	Zn	50
Fe	100		

CLP Spiking Solution 2 Matrix: 20% HCI				
Volume (mL)	Prod	duct No.		
100	W2-	100		
500	W2-	500		
Element	Conc.	Element	Conc.	
	(µg/mL)		(µg/mL)	
Al	(μg/mL) 200	Sb	(µg/mL) 50	
Al As	, ,	Sb Se		
-	200		50	

ICP-MS Tuning Solutions

Tuning solutions are designed to meet ICP-MS manufacturers' specifications

Read to Use Solutions

Tuning Solution for Agilent Instruments Matrix: 2% HNO₃, Volume: **500mL**

Elements	Conc. (µg/L)	Product No.
⁷ Li, Co, Y,	10	LMSTNG5DIL-500
Ce, Tl		

Tuning Solution for PerkinElmer Instruments Matrix: 2% HNO₃, Volume: 500mL

Elements	Conc.	Product	
	(µg/L)	No.	
⁷ Li, Be, Mg, Co, Y, In, Ba,	10	LMSTNG7-500	
Ce, Tl, Pb, U			

Tuning Solution for PerkinElmer DRC Instruments

Matrix: 2% HNO3, Volume: 500mL

Elements	Conc. (µg/L)	Product No.
Ва	10	LMSTNG8-500
Be, Mg, Fe,	1	
Co, In, Ce		
Pb, Th, U		

Tuning Solution for Thermo Instruments Matrix: 2% HNO₃, Volume: 500mL

Elements	Conc. (µg/L)	Product No.
⁷ Li, Be, Mg, Co, In, Ba, Ce, Pb, Bi, U	10	LMSTNG6-500

Tuning Solution for Varian Instruments Matrix: 2% HNO₃, Volume: **500mL**

Elements	Conc. (µg/L)	Product No.	
Be, Mg, Co, In, Ba, Ce,	250	LMSTNG9-500	
Tl. Pb. Th			

Cobalt in HCI Tuning Solution for Agilent Instruments

Matrix: 2% Ultrapure HCl, Volume: 500mL

Elements	Conc. (µg/L)	Product No.
Co	1	LMSTNG4-500

Concentrates - Ready to Dilute

Tuning/Mass Calibration Multi-Element Mix 1 Matrix: 5% HNO₃, Volume: 100mL or 500mL

Elements	Conc. (µg/mL)	Product No.
⁷ Li, Y, Ce, Tl	10	LMSTNG1-100 LMSTNG1-500

Item suitable for use with Agilent instruments as well as others

Tuning/Mass Calibration Multi-Element Mix 1A Matrix: 1% HNO₃, 0.5% HCl, Volume: 100mL or 500mL

000		
Elements	Conc.	Product
	(µg/mL)	No.)
⁷ Li, Co, Y,	10	LMSTNG5-100
Ce, TI		LMSTNG5-500

Tuning/Mass Calibration Multi-Element Mix 2 Matrix: 1% HNO₃, Volume: 100mL or 500mL

Elements	Conc. (µg/mL)	Product No.
Be, Mg, Co, In, Ce, Pb	10	LMSTNG2Z-100 LMSTNG2Z-500

Item suitable for use with Thermo instruments as well as others

Tuning/Mass Calibration Multi-Element Mix 3 Matrix: 5% HNO₃, Volume: 100mL or 500mL

Elements	Conc. (µg/mL)	Product No.
⁷ Li, Be, Mg,	10	LMSTNG3Z-100
Co, Y, In, Ba,		LMSTNG3Z-500
Ce, Tb, Pb, U	l	

Item suitable for use with Thermo instruments as well as others

Section 2 Aqueous Standards

Single-Element Standards Ion Chromatography and Wet Chemistry Standards

Multi-Element Standards for ICP-AES and ICP-MS

Multi-Element
General Environmental
Spiking Solutions
Water Pollution Standards
QC Check Samples for
Water
QC Checks for Trace Metals
International Environmental
Standards

Second Source (pairmatched) Standards EPA 200.7, 6010, CLP

EPA Method Ref Chart

► ICP-MS Standards EPA 200.8, 6020 CLP

Section 2 Aqueous Standards

VHG Tips

Instrument manufacturers often suggest special instrument tuning and optimization solutions. VHG Labs can provide custom solutions for this purpose. Please submit a request.

VHG's "Internal Standard Multi-Element Mix 2" is recommended for ICP-MS environmental sample analysis. It contains common, method suggested elements and has the additional advantage of a higher concentration for ^eLi and ^{4e}Sc--this aids in reducing error in results due to slight interferences or contamination evident at masses 6 and 45.

ICP-MS Tuning and Detector Optimization Solutions

Tuning solutions are designed to meet ICP-MS manufacturers' specifications

Detector Calibration Multi-Element Mix			
Matrix	Volume (mL)	Product No.	
5% HNO ₃	100	LDCAL-100	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
⁷ Li	50	In	10
Be	100	Ce	10
Mg	25	Tb	5
Sc	25	TI	10
Co	20	U	5
Υ	10		

Item is suitable for use with Thermo instruments as well as others.

Oxide & Doubly Charged Ion Test Mix Matrix: 2% HNO ₃ , Volume: 100 mL		
Elements	Conc. (µg/mL)	Product No.
Ba, Ce	1	LOD-100

See Page 34 for single-element Barium and Cerium standards.

P/A Tuning Multi-Element Mix 1			
Matrix	Volume (mL)	Product No.	
20% HCI, tr. HF	100	LDPA1-100	
Element	Conc. (μg/mL)	Element	Conc. (µg/mL)
⁶ Li	5	Υ	2.5
Be	20	Мо	10
Na	5	Ru	10
Mg	10	Pd	10
Al	5	Cd	20
Sc Ti V Cr	5	In	5
Ti	5	Sn	10
V	5	Sb	10
Cr	5	Ва	5
Mn	5	Tb	2.5
Со	5	Lu	5
Ni	10	Ir	5
Cu	5	Pb	10
Zn	20	Bi	5
Ge	10	TI	
As	20	Th	5 5 5
Sr	5	U	5

Item is suitable for use with Agilent instruments as well as others.

ICP-MS Internal Standard Stock Solutions

- Single and Multi-element internal standard stock solutions are manufactured to be free of impurities.
- ◆ These solutions are shipped with a comprehensive Certificate of Analysis.

Single-Element Stock Standards Volume: 100mL			
Element	Matrix	Conc. (µg/mL)	Product No.
⁶ Li	2% HNO ₃	100	LISC6LI-100
⁶ Li	2% HNO ₃	10	LISA6LI-100
Sc	2% HNO ₃	10	LISASC-100
Co	2% HNO ₃	10	LISACO-100
Ge	2% HNO _{3,} tr. HF	10	LISAGE-100
Υ	2% HNO ₃	10	LISAY-100
Rh	2% HCI	10	LISARH-100
In	2% HNO ₃	10	LISAIN-100
Tb	2% HNO ₃	10	LISATB-100
Lu	2% HNO ₃	10	LISALU-100
Ir	2% HCl	10	LISAIR-100
Pt	5% HCI	10	LISAPT-100
Bi	2% HNO ₃	10	LISABI-100

ICP-MS Internal Standard Stock Solutions

- Made of pure materials and free of contaminating elements
- Blends include the most common and effective elements for ICP-MS
- Sold in convenient concentrations for sample diluting into working solutions or as the stock blend for automated addition of internal standards

Internal Standard Multi-Element Mix 1			
Matrix	Volume (mL)	Product No.	
5% HNO ₃	100	LIS1-100	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
_			
⁶ Li	100	In	100
Sc Sc	100	In Tb	100
		+ ***	

Internal Standard Multi-Element Mix 2				
Matrix	Volume (mL)	Product No.		
2% HNO ₃	100	LIS2-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
⁶ Li	100	In	20	
Sc	100	Tb	20	
Ga	20	Bi	20	
Υ	20			

Internal Standard Multi-Element Mix 3				
Matrix	Volume (mL)	Product No. No.		
5% HNO ₃ , tr. HF.	100	LIS3-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
⁶ Li	100	Tb	100	
Sc	100	Lu	100	
Ge	100	Bi	100	
In	100			

Internal Standard Multi-Element Mix 4			
Matrix	Volume (mL)	Product No.	
5%HNO ₃ , tr. HF	100	LIS4-100	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
	(µg/111L)		(µg/111L)
⁶ Li	50	In	10
⁶ Li Sc		In Tb	
	50		10

Internal standards for EPA Methods can be found on Pages 68 and 70

CCT/DRC/ORS Multi-Element Mix 1			
Matrix	Volume (mL)	Product No.	
2% HNO ₃	100	LCELL-100	
E1 1	0	E1	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Cr	000.	As	

Gold Stabilizer for Hg (Single Element)				
Matrix: 5%	HCI	Conc: 100µg/mL		
Element	Volume	Product		
	(mL)	No.		

VHG's Mixing Tees

ICP and ICP-MS users can save both time and money by using an inexpensive mixing tee to introduce internal standards to their solutions. See Page 87 for additional information.

Section 2 Aqueous Standards

Single-Element Standards Ion Chromatography and Wet Chemistry Standards

Multi-Element Standards for ICP-AES and ICP-MS

Multi-Element
General Environmental
Spiking Solutions
Water Pollution Standards
QC Check Samples for
Water

QC Checks for Trace Metals International Environmental Standards

EPA Method Ref Chart Second Source (pairmatched) Standards EPA 200.7, 6010, CLP

► ICP-MS Standards EPA 200.8, 6020 CLP

Section 2 Aqueous Standards

VHG Tips

VHG offers gold stabilizer in solution form for Hg analysis. EPA Method 200.8 for ICP-MS explains the use of gold stabilizer. We recommend an aqueous matrix including HCl and HNO₃. Note that our Au stabilizer includes Cl⁻.

EPA Method 200.8 for ICP-MS

Standards designed for US EPA published methods

Acid Matrix/Blank Solutions

ASTM Type I water and Trace Metal Grade acids used. HDPE bottles are acid leached and rinsed with DI water. Volume: 500mL			
Name	Matrix	Product No.	
Nitric Acid Blank	5% HNO ₃	HNO3-BLK-500	
Hydrochloric Acid Blank	5% HCI	HCL-BLK-500	

Internal Standard

Internal Standard Stock Solution

Hydrochloric/Nitric Blank

Matrix: 5% HNO ₃				
Volume (mL)	Product No.			
100	LIS2008Z-100			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
⁶ Li	10	Tb	10	
Sc	10	Lu	10	
Υ	10	Bi	10	
In	10			

Tuning Solution

Tune & Resolution Solution 1 for Method 200.8 & ILM05.2

ICB/CCB-500

Standard A2

Matrix: 5% HNO ₃				
Volume (mL)	Product No.			
100	LTS2008D-100			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Be	10	In	10	
Mg	10	Pb	10	
Co	10			

Calibration Standards - See 200.8 Section 7.4 (Cal) & 7.9 (LFB)

5% HCI, 1% HNO₃

Volume (ml	ume (mL) Product No.			
100	L53	L53SSA1-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Al	10	Ni	10	
As	10	Pb	10	
Ве	10	Sb	10	
Cd	10	Se	10	
Со	10	Th	10	
Cr	10	TI	10	
Cu	10	U	10	
Mn	10	V	10	
Мо	10	Zn	10	

Standard B Matrix: 1% HNO ₃				
Volume (mL) Product No.				
100	00 LSSB-100			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Ag	10	Ва	10	

Matrix: 5% HNO ₃ , tr. Tartaric Acid				
Volume (mL) Product No.				
100	L54SSA2-100			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Al	10	Ni	10	
As	10	Pb	10	
Be	10	Sb	10	
Cd	10	Se	50	
Co	10	Th	10	
Cr	10	TI	10	
Cu	10	U	10	
Mn	10	V	10	
Мо	10	Zn	10	

^{*} NOTE L54SSA2 is the same as L53SSA1 but with Se at 50µg/mL

EPA Method 200.8 for ICP-MS

Calibration Standards

200.8 Stock Calibration Standard CS1 Matrix: 5% HNO₃, tr. Tartaric Acid

Volume (mL)	Product No.			
100	L200	L2008CS1-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Al	10	Ni	10	
As	10	Pb	10	
Ве	10	Sb	10	
Cd	10	Se	10	
Со	10	Th	10	
Cr	10	TI	10	
Mn	10	U	10	
Мо	10	V	10	

200.8 Stock Calibration Standard CS2 Matrix: 2% HNO₃

Volume (mL)	Pre	oduct No.	
100	L2	008CS2-100	
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ag	10	Fe	100
Ва	100	Zn	100
Cu	100		

200.8 Stock Calibration Standard CS3 Matrix: 2% HNO₃

Volume (mL)	Pro		
100	L20		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ca	10,000	Mg	1000
K	1000	Na	10,000

For second source standards, see Page 59

Primary Standard

Second Source Standard

Volume (mL)

Environmental Calibration Standard A

M	Matrix: 5% HNO ₃ , tr. Tartaric Acid, tr. HF					
V	olume (mL)	Product No.				
10	າດ	LCAL 1A-100				

100 LCAL1A-100			
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ag	10	Mn	10
Al	10	Мо	10
As	10	Na	1000
Ва	10	Ni	10
Be	10	Pb	10
Ca	1000	Sb	10
Cd	10	Se	10
Со	10	Sr	10
Cr	10	Ti	10
Cu	10	TI	10
Fe	1000	U	10
K	1000	V	10
Mg	1000	Zn	10

Mercury Standard 10 Matrix: 5% HNO ₃			
Volume (mL)	Product No.		
100	LHGN-100		
Element	Conc. (µg/mL)		
Hg	10		

Environmental ICV Standard A

Matrix: 5% HNO3, tr. Tartaric Acid, tr. HF

Product No.

100	LICV1A-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ag	10	Mn	10
Al	10	Мо	10
As	10	Na	1000
Ва	10	Ni	10
Be	10	Pb	10
Ca	1000	Sb	10
Cd	10	Se	10
Со	10	Sr	10
Cr	10	Ti	10
Cu	10	TI	10
Fe	1000	U	10
K	1000	V	10
Mg	1000	Zn	10

Gold Stabilizer for Hg (Single Element) Matrix: 5% HCI

Volume (mL)	Product No.	
100	LSAU-100	
Element	Conc.	
	(μg/mL)	
Au	100	

Section 2 Aqueous Standards

Single-Element Standards Ion Chromatography and **Wet Chemistry Standards**

Multi-Element Standards for ICP-AES and **ICP-MS**

Multi-Element General Environmental Spiking Solutions QC Check Samples for Water Water Pollution Standards QC Checks for Trace Metals

International Environmental Standards **EPA Method Ref Chart** Second Source (pair-

matched) Standards EPA 200.7, 6010, CLP **ICP-MS Standards**

► EPA 200.8, 6020 CLP

Section 2 Aqueous Standards

VHG Tips

With ICP-MS, an internal standard should not be in the unknown or in a spike mix.

Some commercial spiking standards have indium, lithium or bismuth added. VHG Labs has a range of multi-element solutions absent these elements or others commonly used as ICP-MS internal standards.

VHG offers gold stabilizer in solution form for Hg analysis. EPA Method 200.8 for ICP-MS explains the use of gold stabilizer. We recommend an aqueous matrix including HCI and HNO₃. Note that our Au stabilizer includes CI⁻.

EPA Methods 6020 & CLP for ICP-MS

Standards designed for US EPA published methods

US EPA 6020 Internal Standard Stock Solution

Matrix: 5% HNO₃

Volume (mL)	Product No.			
100	LIS6	LIS6020-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
⁶ Li	10	Tb	10	
Sc	10	Но	10	
Υ	10	Bi	10	
In	10			

Calibration Standard For 6020 CLP-M Matrix: 2% HNO₃, tr. Tartaric Acid

Volume (mL)	Product No.			
100	LCAI	LCAL6020-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Ag	10	K	10	
Al	10	Mg	10	
As	10	Mn	10	
Ва	10	Na	10	
Be	10	Ni	10	
Ca	10	Pb	10	
Cd	10	Sb	10	
Co	10	Se	10	
Cr	10	TI	10	
Cu	10	V	10	
Fe	10	Zn	10	

US EPA 6020 Tune & Resolution Solution For method 200.8 & ILM05.2

Matrix: 5% HNO₃

Volume (mL)

Volume (mL)	Product No.			
100	LTS6	LTS6020D-100		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)	
Li	10	In	10	
Co	10	TI	10	

Major Elements Standard Matrix: 5% HNO₃ Volume (mL) Product No. 100 LMES-100 500 LMES-500 **Element** Conc. **Element** Conc. (µg/mL) (µg/mL) Ca 2000 Mg 2000 Fe Na 2000 2000 Κ 2000

For second source standard, see LICVMES on Page 58

CLP ILM05.2 for ICP-MS Spiking Solution Matrix: 5% HNO₃, tr. Tartaric Acid

Dilute as prescribed by the method for both waters and soils

Product No.

100	52SS3Z-100		
500	52SS3Z-500		
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)
Ag	50	Mn	500
Al	2000	Ni	500
As	40	Pb	20
Ва	2000	Sb	100
Be	50	Se	10
Cd	50	TI	50
Со	500	V	500
Cr	200	Zn	500
Cu	250		

CLP ILM05.2 Contract Required Quantitation Limit For Water

ICP-MS CRQL Solution 1 Matrix: 5% HNO₃, tr. Tartaric Acid

Volume (mL)	Product No.							
100	CRQ	CRQL1MS-100						
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)					
Ag	10	Mn	5					
Al	300	Ni	10					
As	10	Pb	10					
Ва	100	Sb	20					
Be	10	Se	50					
Cd	10	TI	10					
Co	5	V	10					
Cr	20	Zn	10					
Cu	20							

ICP-MS CRQL Solution 2 Matrix: 5% HNO₃, tr. Tartaric Acid

Volume (mL)	Product No.								
100	CRQ	CRQL2MS-100							
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)						
Ag	10	Mn	10						
As	10	Ni	10						
Ва	100	Pb	10						
Be	10	Sb	20						
Cd	10	Se	50						
Co	10	TI	10						
Cr	20	V	10						
Cu	20	Zn	20						

Section 2 **Aqueous Standards**

Single-Element Standards

Ion Chromatography and

Wet Chemistry Standards Multi-Element Standards for ICP-AES and ICP-MS Multi-Element

General Environmental Spiking Solutions Water Pollution Standards QC Checks for Trace Metals International Environmental

EPA Method Ref Chart

Second Source (pairmatched) Standards EPA 200.7, 6010, CLP **ICP-MS Standards** ► EPA 200.8, 6020 CLP

Standards

EPA Methods 6020 & CLP for ICP-MS

Interference Checks

US EPA ICP-MS ICS A Mix 1

For method 6020, ILM05.2 and ILMO5.3 Matrix: 5% HNO₃, 0.5% HCI

Volume (mL)	Product No.						
500	LICS	A1Z-500					
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)				
Al	500	K	500				
С	1000	Mg	500				
Ca	500	Na	500				
Cl	5000	Р	500				
Fe	500	S	500				

6020A ICS Interferents A

Matrix: 2% HNO₃, tr. HF

Values (m)

To be diluted by 1:10 to achieve prescribed concentrations

Volume (mL)	Product No.								
500	LINT	LINTA6020A-500							
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)						
Al	1000	Mg	1000						
С	2000	Мо	20						
Ca	3000	Na	2500						
CI	20,000	Р	1000						
Fe	2500	S	1000						
K	1000	Ti	20						

Dunalizat Na

US EPA ICP-MS ICS Interferents A Mix 2 For method 6020, ILM05.2 and ILMO5.3

Matrix: H₂O, tr. HF

Volume (mL)	Product No.								
500	LICS	LICSA2-500							
Element	Conc. (µg/mL)	Element Conc. (µg/mL)							
Мо	10	Ti	10						

6020A & CLP-M ICS Analytes B

Matrix: 5% HNO₃

To be diluted by 1:1000 to achieve prescribed concentrations

Volume (mL)	Product No.								
100	LINT	LINTB6020-100							
Element	Conc. Element (µg/mL)		Conc. (µg/mL)						
Ag	5	Mn	20						
As	10	Ni	20						
Cd	10	Se	10						
Co	20	V	20						
Cr	20	Zn	10						
Cu	20								

Method 6020 ICS: Analytes B

Matrix: 5% HNO₃

Volume (mL)

100 LICSB1-100								
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)					
Ag	10	Cu	10					
Al	10	Mn	10					
As	10	Ni	10					
Cd	10	Se	10					
Со	10	V	10					
Cr	10	Zn	10					

Product No.

Method 6020 ICS-A mixes are to be diluted 1:5 and ICS-B by 1:500 in order to achieve prescribed concentrations.

General Memory & Interference Check Sample Mix

Environmental Sample Interferents Matrix: 2% HNO₃

Volume (mL)	Product No.						
500	LMC	S1Z-500					
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)				
Al	1000	K	1000				
С	5000	Mg	1000				
Ca	1000	Na	1000				
CI	5000	Р	1000				
Fe	1000	S	1000				

ICS Target Analytes B For ILM 05.2 & ILM 05.3

Matrix: 5% HNO₃, tr. Tartaric Acid

Volume (mL)	Product No.					
100	LICS	B2Z-100				
Element	Conc. (µg/mL)	Element	Conc. (µg/mL)			
Ag	10	Mn	10			
Al	10	Ni	10			
As	10	Pb	10			
Ва	10	Sb	10			
Be	10	Se	10			
Cd	10	TI	10			
Со	10	V	10			
Cr	10	Zn	10			
Cu	10					

CERTIFICATE OF ANALYSIS

Multi-Element Aqueous CRM

Internal Standard Multi-Element Mix 1

Matrix: 5% HNO₃ Lot #: Sample Product #: LIS1-XXX Expires: July 2011

Element	Certified Concentration & Uncertainty	Element	Certified Concentration & Uncertainty	Element	Certified Concentration & Uncertainty
Bi	$100 \pm 0.5 \mu\text{g/mL}$	⁶ Li	100 ± 0.5 μg/mL	Y	100 ± 0.5 μg/mL
Ga	$100 \pm 0.5 \mu\text{g/mL}$	Sc	100 ± 0.5 μg/mL		
In	100 ± 0.5 μg/mL	Tb	100 ± 0.5 μg/mL		

Intended Use: This certified reference material is intended for use as an internal standard for inductively coupled plasma mass spectrometry (ICP-MS).

Certification & Traceability: VHG CRMs are manufactured and certified under a quality management system that is registered to ISO 9001, ISO Guide 34 and ISO/IEC 17025. This CRM was prepared to the certified concentrations shown above by gravimetric methods using single-element concentrates that were certified using the "High Performance ICP-OES" protocol developed by NIST and are directly traceable to the NIST SRMs listed below. This solution was stabilized using high purity nitric acid (HNO3) and diluted with filtered (0.22µm), 18 M-ohm deionized water. The balances used in the preparation of VHG CRMs are calibrated regularly with traceability to NIST. All volumetric dilutions are performed in Class A calibrated glassware. The certified concentrations were determined by VHG Labs based upon gravimetric procedures. Secondary verification of the certified concentrations was performed by VHG Labs using ICP-OES that was calibrated and/or referenced against NIST SRMs: 3106, 3119a, 3124a, 3129a, 3148a, 3157a and 3167a. The uncertainty associated with each certified concentration represents the expanded uncertainty at the 95% confidence level using a coverage factor of k=2.

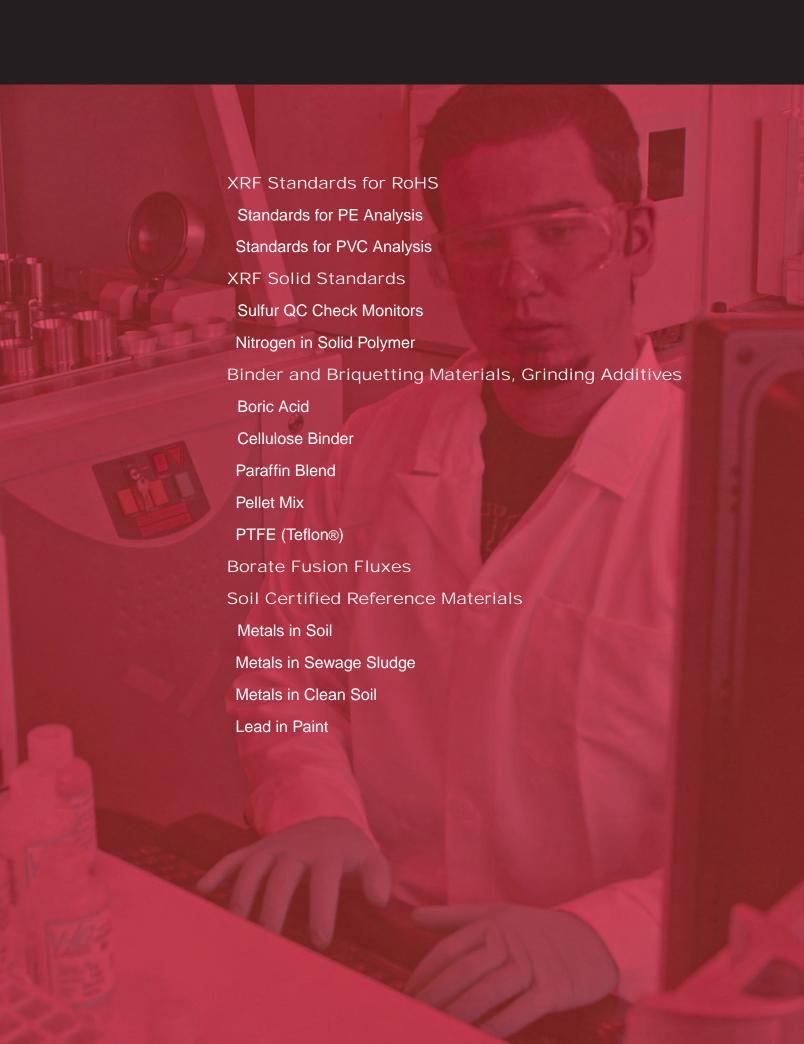
Uncertified Values: ICP-MS was used to determine trace metal concentrations for this product (nd = not determined).

	Trace Concentrations (µg/L)												
Ag	< 0.5	Ce	< 0.2	Gd	< 0.2	Lu	< 0.2	Pb	<1	Se	<2	Tl	< 0.5
Al	<2	Co	<1	Ge	< 0.5	Mg	<5	Pd	< 0.5	Si	<100	Tm	< 0.2
As	<2	Cs	< 0.5	Hf	< 0.2	Mn	<1	Pr	< 0.2	Sm	< 0.2	U	< 0.5
Au	< 0.5	Cr	< 0.5	Hg	< 0.5	Mo	< 0.5	Pt	< 0.5	Sn	< 0.5	V	<1
В	<5	Cu	<1	Но	< 0.2	Na	<25	Rb	< 0.5	Sr	<1	W	< 0.5
Ba	<1	Dy	< 0.2	In	MAJOR	Nb	< 0.5	Re	< 0.2	Ta	< 0.5	Y	MAJOR
Be	< 0.5	Er	< 0.2	Ir	< 0.2	Nd	< 0.2	Rh	< 0.5	Tb	MAJOR	Yb	< 0.2
Bi	MAJOR	Eu	< 0.2	K	<25	Ni	<2	Ru	< 0.5	Te	<1	Zn	<2
Ca	<20	Fe	<10	La	< 0.5	Os	< 0.5	Sb	<1	Th	< 0.5	Zr	< 0.5
Cd	< 0.5	Ga	MAJOR	Li	MAJOR	P	<100	Sc	MAJOR	Ti	<2		

Instructions for Use: We recommend that the solution be thoroughly mixed by repeated shaking or swirling of the bottle immediately prior to use. To achieve the highest accuracy the analyst should: (1) use only pre-cleaned containers and transferware, (2) not pipette directly from the CRM's original container, (3) use a minimum sub-sample size of 500µL, (4) make dilutions using calibrated balances or certified volumetric class A flasks and pipettes, (5) dilute with the same matrix as the original CRM, and (6) never pour used product back into the original container. The solution should be kept tightly capped and stored under normal laboratory conditions. Do not freeze, heat, or expose to direct sunlight. Minimize exposure to moisture or high humidity.

Period of Validity: VHG ensures the accuracy of this solution until the expiration date shown above, provided the instructions for use are followed. During the period of validity, the purchaser will be notified if this product is recalled due to any significant changes in the stability of the solution.

VHG Labs, Inc.


Susan Evans Norris, Certifying Officer

VHG Labs, Inc. waives all responsibility for any damages resulting from the usage and/or implementation of the products/data described herein.

276 Abby Road Manchester, NH 03103 (603) 622-7660 Fax: (603) 622-5180 www.vhglabs.com

Section 3 Solid Standards

RoHS Calibration Standards (PE Discs) For XRF

VHG Labs' set of ten polyethylene discs are intended for use in the analysis of polyolefins, such as polyethylene (PE) or polypropylene (PP), by XRF, for compliance with the RoHS directive. They are intended for use with ASTM F2617-08. The discs contain the elements regulated by RoHS: bromine (Br), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg).

Our PE standards can also be used for the analysis of additives and catalyst residues in polyolefins. Six additional elements commonly present in polyolefins as additives or fillers have also been incorporated into the discs: antimony (Sb), arsenic (As), chlorine (Cl), sulfur (S), tin (Sn) and zinc (Zn).

The raw materials used to manufacture these reference materials were mixed, extruded and granulated to achieve a high degree of homogeneity and then pressed into discs. Each set is accompanied by a COA that states the actual certified elemental concentrations and uncertainties as determined by ICP-MS, NAA, ICP-AES, and CV-AAS. This set of PE discs offers excellent homogeneity, accuracy, and precision over a wide range of concentrations.

Calibration Standard Discs for PE (Polyethylene) Analysis

RoHS compliant polyethylene discs for analysis of metals in polyolefins. Elemental concentrations (mg/kg) are approximate and may vary from batch to batch.

Standard No.	As	Br	Cd	CI	Cr	Hg	Pb	S	Sb	Sn	Zn
Standard 1	0	0	0	0	0	0	0	0	0	0	0
Standard 2	145	1000	13	1075	104	483	53	107	34	19	50
Standard 3	8	51	25	70	973	25	99	63	345	178	98
Standard 4	60	383	252	430	259	188	1033	591	18	41	976
Standard 5	15	101	100	120	459	49	406	234	136	85	384
Standard Set	Product No.										

Each set consists of 10 discs (40mm each) (2 each of Standards 1-5)

ROHS-PE-SET5

RoHS Calibration Standards (PE Powder) For ICP or XRF

QC Check Samples for PE (Polyethylene) Analysis

RoHS compliant polymer samples in powder form for the determination of hazardous materials in PE. Available in 3 standard set.

Standard No.	Br (wt %)	Cd (wt %)	Cr (wt %)	Hg (wt %)	Pb (wt %)
Standard 1	0.0000	0.0000	0.0000	0.0000	0.0000
Standard 2	0.0250	0.0050	0.0500	0.0500	0.0500
Standard 3	0.0500	0.0100	0.1000	0.1000	0.1000
Standard Sets			Product No.		

Set of 3 QC Check Samples in PE Powder (25 grams each)

ROHS-PE-SET1P

XRF Standard for PE (Polyethylene) Analysis

RoHS compliant polymer standards in powder form for the determination of hazardous materials in PE. Available in 9 standard set plus 1 QC Check Sample.

Standard No.	Br (wt %)	Cd (wt %)	Cr (wt %)	Hg (wt %)	Pb (wt %)
Standard 1	0.0000	0.0000	0.0000	0.0000	0.0000
Standard 2	0.0025	0.0025	0.0050	0.0100	0.1000
Standard 3	0.0400	0.0100	0.0750	0.0075	0.0250
Standard 4	0.0100	0.0125	0.1250	0.0500	0.0050
Standard 5	0.0250	0.0075	0.1000	0.0250	0.1250
Standard 6	0.0500	0.0010	0.0650	0.0800	0.0750
Standard 7	0.0200	0.0005	0.0250	0.1000	0.0100
Standard 8	0.0300	0.0050	0.0500	0.0030	0.0500
Standard 9	0.0050	0.0150	0.0100	0.1200	0.0350
QC Sample	0.0250	0.0050	0.0500	0.0500	0.0500
Standard Sets			Product No.		
Set of 9 Standards plus one QC Check Sample in		ROHS-PE-SE	T2P		

PE powder (25 grams each)

Section 3 **Solid Standards**

XRF Standards for RoHS

► Standards for PE Analysis Standards for PVC Analysis

XRF Solid Standards Binder and Briquetting Materials, Grinding Additives **Borate Fusion Fluxes** Soil CRMs

Section 3 Solid Standards

RoHS Calibration Standards (PVC Discs or Powder)

For ICP or XRF

QC Check Samples for PVC (Polyvinylchloride) Analysis

RoHS compliant polymer samples in powder or disc form for the determination of hazardous materials in PVC. PVC samples also include some Ca and Cl in each sample. Available in 3 standard set only.

Standard No.	Br (wt %)	Cd (wt %)	Cr (wt %)	Hg (wt %)	Pb (wt %)
Standard 1	0.0000	0.0000	0.0000	0.0000	0.0000
Standard 2	0.0250	0.0500	0.0500	0.0500	0.0500
Standard 3	0.0500	0.1000	0.1000	0.1000	0.1000
Standard Sets			Product No.		
Set of 3 QC Che in PVC powder (2			ROHS-PVC-SET3	P	
Set of 3 QC Che PVC discs (40mr			ROHS-PVC-SET3	D	

For 31mm discs, please inquire.

XRF Standard Sets for PVC (Polyvinylchloride) Analysis

RoHS compliant polymer samples in powder or disc form for the determination of hazardous materials in PVC. PVC samples also include some Ca and Cl in each sample. Available in 9 standard set plus 1 QC Check Sample.

Standard No.	Br (wt %)	Cd (wt %)	Cr (wt %)	Hg (wt %)	Pb (wt %)
Standard 1	0.0000	0.0000	0.0000	0.0000	0.0000
Standard 2	0.0025	0.0025	0.0050	0.0100	0.1000
Standard 3	0.0400	0.0100	0.0750	0.0075	0.0250
Standard 4	0.0100	0.0125	0.1250	0.0500	0.0050
Standard 5	0.0250	0.0075	0.1000	0.0250	0.1250
Standard 6	0.0500	0.0010	0.0650	0.0800	0.0750
Standard 7	0.0200	0.0005	0.0250	0.1000	0.0100
Standard 8	0.0300	0.0050	0.0500	0.0030	0.0500
Standard 9	0.0050	0.0150	0.0100	0.1200	0.0350
QC Sample	0.0250	0.0050	0.0500	0.0500	0.0500

Standard Sets
Set of 9 Standards plus 1 QC Check Sample

in PVC powder (25 grams each)

Set of 9 Standards plus 1 QC Check Sample PVC discs (40mm each)

ROHS-PVC-SET4D

ROHS-PVC-SET4P

ROHS-PVC-SET4L

Product No.

For 31mm discs, please inquire.

Sulfur QC Check Monitor

For XRF

Sulfur QC Check Monitors

Monitor Samples for XRF-Silicate Glasses. Optically polished on the analytical surface; sizes 30-40mm in diameter and 5mm in height.

Sulfur Standards	
Description	Product No.
High level of Sulfur approx. 0.70wt%	SGL-HI
Low level of Sulfur approx. 0.005wt%	SGL-LO
Mid level of Sulfur approx. 0.050wt%	SGL-MD

For other QC check monitors, please inquire.

Nitrogen in Solid Polymer

For XRF

Nitrogen in Solid Polymer

Finely divided synthetic polymer standard that contains a certified amount of nitrogen. Used for calibrating instruments for the analysis of nitrogen in all types of polymers and other solids that are completely combustible.

Description Product No.

Concentration Range: NP-XX-10G

1ppm - 3.0 wt% Nitrogen (10 grams)

Please specify concentration. Please inquire for other sizes.

Binder and Briquetting Materials, Grinding Additives

Direct analysis of solids by XRF and other techniques such as Laser Ablation ICP-MS often utilize dry sample preparation materials. VHG Labs provides a range of special high quality products for these purposes.

Boric Acid

Powder used as binding agent and tablets as grinding aid that withstands elevated temperature. Moderately self-binding.

Form	Package	Product No.
Powder	500g bottle	BAX1-500G
0.5g Tablets	1500/bottle	BAX50-1500T

Cellulose Binder

Good binder choice for samples with moderately soft characteristics, e.g. cement, limestone, etc. Available in powder form.

Form	Package	Product No.
Ashless Powder	500g bottle	CBXA-500G
Microcrystalline Powder	500g bottle	CBXM-500G

Paraffin Binder

Binding aid, excellent for use with geological, ore, slag, and other hard or abrasive samples. Low moisture, <20µm powder that can be blended with sample at 10-20% by weight for pressing.

Form	Package	Product No.
Powder	450g bottle	PBX1-450G

Pellet Mix

Wax-based blend, self-binding. For use with cement, alumina, ceramics, limestone, and miscellaneous refractories. Powder (approx. 30µm) that can be blended with sample at 10% by weight.

Form	Package	Product No.
Powder	500g bottle	PMX1-500G
0.25g Tablets	500/bottle	PMX25-500T
0.5g Tablets	500/bottle	PMX50-500T

PTFE (Teflon®)

Often the binder of choice for laser ablation where low blanks are needed. 6-10µm particle size. Use at up to 1:1 sample to binder.

Form	Package	Product No.
Powder	100g bottle	PTFE12-100

Section 3 Solid Standards

XRF Standards for RoHS

Standards for PE Analysis

Standards for PVC Analysis

XRF Solid Standards

- ► Sulfur QC Check Monitors
- ► Nitrogen in Solid Polymer

Binder and Briquetting Materials, Grinding Additives

- ► Boric Acid
- ▶ Cellulose Binder
- ▶ Paraffin Blend
- ► Pellet Mix
- ▶ PTFE (Teflon®)

Borate Fusion Fluxes Soil CRMs

Section 3 Solid Standards

V-Flux™ High Purity Borate Fusion Fluxes

- High Purity 99.998+% (Trace Impurities Certified on COA)
- Homogeneous, Free-Flowing, Dust-Free Easy to Handle
- Controlled High Density Particle Size No Crucible Overflows
- Anhydrous, Non-Hygroscopic Faster Weighing Times
- Low Loss on Fusion Avoids Correction, Pre-Firings
- Pre-Fused Fluxes Feature Uniform Individual Particle Composition

Borate fusion is an effective method of preparing samples, like cement, ceramics, glass, ores, oxides, refractories and rocks that either 1) due to inhomogeneity of particle size, density or composition, are difficult to press as a homogeneous pellet for analysis by XRF or OES or 2) are difficult to dissolve in acid, for analysis by AA or ICP.

Virtually all fusions are performed with borate compounds. Samples are mixed with a flux, typically lithium tetraborate ($\text{Li}_2\text{B}_4\text{O}_7$, m.p. 920°C), lithium metaborate (LiBO_2 , m.p. 845°C) or mixtures of the two. The sample/flux mixture is heated until the flux disintegrates or solubilizes the sample, yielding a melt that is homogeneous at the atomic level and can be cast as a glass disc for analysis by XRF or OES or dissolved in HNO₃ or HCl for AA or ICP analysis.

Lithium tetraborate is better suited for dissolution of basic oxides while lithium metaborate is more suitable for acidic oxides. Between the two, you can dissolve almost anything with bonded oxygen. The addition of a high absorption diluent like lanthanum oxide has particular applications to geological and other similar types of samples exhibiting absorption-enhancement effects. The addition of non-wetting agents like fluorides can be added in small quantities so the molten flux will not stick to the crucible.

Lithium Metaborate Fluxes

Lithium Metaborate Fluxes (m.p. 845°C)

A basic flux recommended for acidic samples; soluble in water. Often used in testing of ceramics and steel. Will not dissolve highly basic refractories. Samples must be fully oxidized. For use with AA and ICP instrumentation.

DescriptionProduct No.100% Lithium metaborateVFLUX-210-1KG

Lithium Metaborate:Lithium Tetraborate Blends (m.p. 840°C)

Intermediate acidity. Will dissolve entire aluminosilicate range. Often used in testing of ceramics and glass. Samples must be fully oxidized.

Description 80% Lithium metaborate 20% Lithium tetraborate	Product No. VFLUX-211-1KG
80% Lithium metaborate 20% Lithium tetraborate, pre-fused	VFLUX-211PF-1KG
64.7% Lithium metaborate 35.3% Lithium tetraborate	VFLUX-212-1KG
64.7% Lithium metaborate 35.3% Lithium tetraborate, pre-fused	VFLUX-212PF-1KG
61.5% Lithium metaborate 33% Lithium tetraborate 5.5% Sodium nitrate	VFLUX-213-1KG

V-Flux™ High Purity Borate Fusion Fluxes

Lithium Tetraborate Fluxes

Lithium Tetraborate Fluxes (m.p. 920°C)

General purpose acidic fluxes for fusing aluminosilicates, basic oxides, carbonates, ceramics, cement, glass, rare earth oxides, refractories, soils, and steel. Not suitable for highly acidic samples. Samples must be fully oxidized. VFLUX-312PF is typically used for cements. VFLUX-313 is typically used for ceramics.

Description	Product No.	
100% Lithium tetraborate	VFLUX-310-1KG	
100% Lithium tetraborate (100-500 micron), prefused	VFLUX-311PF-1KG	
100% Lithium tetraborate (<800 micron), pre-fused	VFLUX-312PF-1KG	
100% Lithium tetraborate (phosphorus <20ppm)	VFLUX-313-1KG	

Lithium Tetraborate:Lithium Metaborate Fluxes (m.p. 875°C)

Intermediate activity flux. Suitable for aluminosilicates and calcareous refractories. Often used in testing of cement and steel. Samples must be fully oxidized. VFLUX-315 is suitable for glass samples and chrome ore bearing samples up to 50% by weight.

Description	Product No.
66.5% Lithium tetraborate 33.5% Lithium metaborate	VFLUX-314-1KG
66.5% Lithium tetraborate 33.5% Lithium metaborate, pre-fused	VFLUX-314PF-1KG
50% Lithium tetraborate 50% Lithium metaborate	VFLUX-315-1KG
50% Lithium tetraborate 50% Lithium metaborate, pre-fused	VFLUX-315PF-1KG

Lithium Tetraborate:Lanthanum Oxide Fluxes (m.p. 900°C)

Non-oxidizing, intermediate activity flux with La as a heavy absorber. Often used in tesing of steel and cement. Samples must be fully oxidized.

Description	Product No.
85% Lithium tetraborate	VFLUX-316-1KG
15% Lanthanum oxide	
81.8% Lithium tetraborate	VFLUX-317-1KG
18.2% Lanthanum oxide	

Lithium Tetraborate:Lithium Fluoride Fluxes (m.p. 780°C)

A low viscosity, low melting, acidic flux. Suitable for fusion on gas burners. Often used in testing of petroleum samples. Samples must be fully oxidized.

Description	Product No.
90% Lithium tetraborate	VFLUX-318-1KG
10% Lithium fluoride	VELLIV 040 41/0
80% Lithium tetraborate	VFLUX-319-1KG
20% Lithium fluoride	

Lithium Tetraborate:Lithium Carbonate:Lanthanum Oxide (m.p. 700°C)

A basic oxidizing flux. Suitable for sulfate, phosphate, and other acidic minerals. Will oxidize traces of reduced species. Note: contains La as a heavy absorber.

Description	Product No.
47% Lithium tetraborate	VFLUX-320-1KG
37% Lanthanum oxide	
16% Lanthanum carbonate	

Section 3 Solid Standards

XRF Standards for RoHS XRF Solid Standards Binder and Briquetting Materials, Grinding Additives Borate Fusion Fluxes Soil CRMs

Section 3 Solid Standards

Soil Certified Reference Materials

- ♦ Interlaboratory certified
- Full certificate of analysis supplied
- ♦ Analysis statistics supplied
- Instrumentally determined concentrations
- Suitable for use with US EPA Methods and other related procedures

Description	Metals in Sandy Loam Soil	Metals in Sewage Amended Soil	
Product No.	DS1-100G	SSD1-50G	
Size	100g	50g	
Element	Nominal Conc. (mg/kg)	Nominal conc. (mg/kg)	
Aluminum Al	2730	15,300	
Antimony Sb	4950	n/a	
Arsenic As	24.8	6.9	
Barium Ba	586	853	
Beryllium Be	n/a	0.6	
Cadmium Cd	1.2	13.7	
Calcium Ca	5430	119,000	
Chromium Cr, total	10.7	41.3	
Cobalt Co	(2.7)	6.2	
Copper Cu	4790	465	
Iron Fe	6480	12,700	
Lead Pb	(144,742)	89	
Magnesium Mg	(2367)	6710	
Manganese Mn	174	172	
Mercury Hg	4.7	3.2	
Molybdenum Mo	n/a	14.2	
Nickel Ni	12.6	26	
Phosphorus P, total	n/a	(10,071)	
Potassium K	1010	6230	
Selenium Se	n/a	19.9	
Silver Ag	6.5	36.3	
Sodium Na	380	2490	
Tin Sn	(304.1)	n/a	
Vanadium V	8.7	109	
Zinc Zn	546	625	

Values in parentheses are not certified and are given for information only.

Soil Certified Reference Materials

- Interlaboratory certified
- Full certificate of analysis supplied
- Analysis statistics supplied
- Instrumentally determined concentrations
- Suitable for use with US EPA Methods and other related procedures

Metals in Sewage Sludge Certified Reference Materials				
Description	Metals in Sewage Sludge (Amended)	Metals in Sewage Sludge (Amended)		
Product No.	SL1-50G	SL2-40G		
Size	50g	40g		
Element	Nominal Conc. (mg/kg)	Nominal conc. (mg/kg)		
Aluminum Al	12,300	18,957		
Antimony Sb	3.1	195.6		
Arsenic As	32.9	170.6		
Barium Ba	1020	1288		
Beryllium Be	4.4	70.2		
Boron B	156	91		
Cadmium Cd	497	76		
Calcium Ca	48,000	44,759		
Chromium Cr, total	346	192		
Cobalt Co	5.7	83.4		
Copper Cu	1130	670		
Iron Fe	19,700	23,572		
Lead Pb	303	284		
Magnesium Mg	8470	7563		
Manganese Mn	379	408		
Mercury Hg	6.9	9.1		
Molybdenum Mo	18	69		
Nickel Ni	159	279		
Phosphorus P, total	2.2 wt %	2.01 wt%		
Potassium K	3170	4492		
Selenium Se	27.3	307.6		
Silicon Si	590	n/a		
Silver Ag	44	72		
Sodium Na	1630	1717		
Strontium Sr	658	677		
Thallium Tl	n/a	111		
Tin Sn	n/a	218		
Vanadium V	40.5	297		
Zinc Zn	1390	1304		

Section 3 Solid Standards

XRF Standards for RoHS XRF Solid Standards Binder and Briquetting Materials, Grinding Additives Borate Fusion Fluxes

Soil CRMs

- ► Metals in Soil
- ► Metals in Sewage Sludge Metals in Clean Soil Lead in Paint

Section 3 Solid Standards

Soil Reference Materials

Description	Blank (Clean) Clay Loam Soil BLKSOIL1-100G	Blank (Clean) Sandy Loam Soil
	BI KSOII 1-100G	Loan oon
Product No.	DENOOIL 1-1000	BLKSOIL2-100G
Size	100g	100g
Element	Nominal Conc. (mg/kg except *)	Nominal Conc. (mg/kg except *)
Aluminum Al	3540	11,033
Antimony Sb	<1	<1
Arsenic As	2	2
Barium Ba	50	204
Beryllium Be	<0.2	0.7
Cadmium Cd	<0.3	0.5
Calcium Ca, soluble	20* (meq/L)	11*(meq/L)
Chromium Cr	<1	9
Cobalt Co	<1	9
Copper Cu	<1	10
Iron Fe	3163	27,000
Lead Pb	<2	17
Magnesium Mg	228* (meq/L)	3* (meq/L)
Manganese Mn	97	577
Mercury Hg	0.03	0.3
Nickel Ni	<1	8
Phosphorus P, total	0.02* (%)	0.09* (%)
Potassium K, soluble	5.7* (meq/L)	0.9* (meq/L)
Selenium Se	0.4	0.3
Silver Ag	<0.5	<0.5
Sodium Na, soluble	39* (meq/L)	0.5* (meq/L)
Thallium Tl	<1	<1
Vanadium V	16	17
Zinc Zn	21	112

Lead Paint Reference Materials

Environmental Lead				
Description	Nominal Conc. Pb	Size	Product No.	
Lead-Free Paint (Powdered)	<0.01µg/g	20 grams	PBFP-20G	
Lead-Free Soil	<4µg/g	50 grams	PBFS-50G	
Lead in Paint Chips	643µg/g	50 grams	PBPC-50G	
Lead Paint in Soil	484µg/g	50 grams	PBPS-50G	

VHG Tips

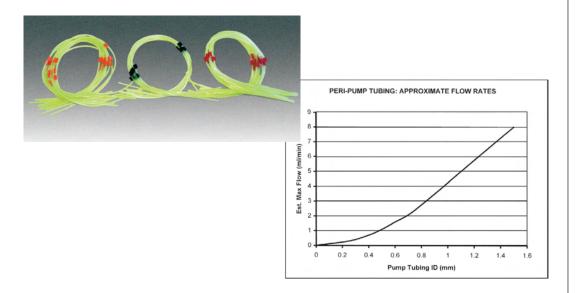
You can cover sample tubes for trace metals with common poly-olefin (kitchen) wrap instead of waxy stretch film that is sold as laboratory wrap.

Common plastic wrap is generally much cleaner. Also, laboratory tissues may introduce contamination when used for wiping ICP-MS sipper probes.

Autosampler Cups & Tubes For AA, GFAA, ICP, ICP-MS, Viscometers

VHG Labs autosampler tubes and vials are standard sizes and fit many manufacturers' autosamplers, including Cetac and Gilson as well as systems by Perkin Elmer, Varian, Unicam, TJA/Thermo Fisher Scientific and others.

Small Volume Sample Cups for AA, ICP and ICP-MS Autosamplers					
Size	Material	Bottom Product No.			
13 x 25mm (1.5 - 2.0mL)	Clarified Polypropylene	Conical	FAASC3-MP	Pack of 1000	


Sample Tubes for ICP, ICP-MS Autosamplers					
Size	Material	Bottom	Product No.		
13 x 100mm (~8mL)	Polypropylene	Round	FPSC4-MP	Pack of 1200	
17 x 100mm (~15mL)	Polypropylene	Round	FPSC1-MP	Pack of 1200	
Plug for FPSC1-MP	Polyethylene	Round	FPSC1-MP-PLUG	Pack of 1200	
30 x 115mm (~50mL) w/cap	Polypropylene	Conical	FPSC2A	Pack of 500	
30 x 115mm (~50mL) w/cap	Polypropylene	Conical Freestanding	FPSC5	Pack of 500	

Sample Tubes for Viscom	eter Autosamplers			
Size	Material	Bottom	Product No.	
2.3 x 6cm (15mL)	Polypropylene	Cylindrical	FVISC-MPA	Pack of 1000

Consumables

Tubing for Peristaltic Pumps For ICP & ICP-MS

Peri-Pump Tubing is available in five different materials:

Flexible PVC
Clear and
economical, used in
most ICP & ICP-MS
work. Has excellent
chemical resistance,
medical grade, FDA
approved DMF 2458,
meets U.S. Pharmacopoeia Class VI

Solvent Flex
Translucent yellow,
used for most oil or
organic solvent samples. Resistant to
cracking, swelling,
and hardening.

Silicone Clear, peroxide-cured, suitable for highpurity applications. Contains no plasticizer, food grade, FDA approved, meets U.S.

Pharmacopoeia

Class VI

Viton™ Black synthetic rubber, resistant to strong acids, bases and solvents.

Santoprene™
Opaque beige to
protect light-sensitive
fluids. Very robust,
long-lasting tubing,
high chemical
resistance, medical
grade, FDA approved, meets U.S.
Pharmacopoeia
Class VI

"2 Bridge" Peri-Pump	"2 Bridge" Peri-Pump Tubing					
	Flexible PVC	Solvent Flex	Silicone	Viton™	Santoprene™	
Quantity Per Pack	12	12	6	6	6	
Length (in.)	17.9	17.9	17.9	6.9	15.7	
No. of Bridges	2	2	2	2	2	
Bridge Interval (in.)	5.9	5.5	5.5	5	5.9	
I.D. mm (in.) /Color	Product No.	Product No.	Product No.	Product No.	Product No.	
0.19 (.007")-oran/red	D180241					
0.25 (.010")-oran/blue	D180253		D180247			
0.38 (.015")-oran/grn	D180261					
0.51 (.02")-oran/yell	D180213	D180228		D180235	D180256	
0.64 (.025")-oran/white	D180222	D180230	D180263	D180239		
0.76 (.03")-blk/blk	D180203	D180209	D180238	D180212	D180268	
0.89 (.035")-oran/oran	D180202	D180208	D180255	D180211		
1.02 (.04")-white/white	D180219	D180232	D180267	D180236		
1.14 (.045")-red/red	D180201	D180207	D180250	D180210	D180259	
1.30 (.051")-gray/gray	D180216	D180240	D180265	D180237		
1.52 (.06")-yell/blue	D180258		D180248			
1.65 (.065")-blue/blue	D180245					
3.18 (.125")-blk/white	D180276					

Section 4 Consumables

Autosampler Cups & Tubes ICP & ICP-MS Consumables

 Peristaltic Pump Tubing Mixing Tees
 Nebulizers
 Torches & Spray-Chambers
 Cones

AA & GFAA Consumables XRF Consumables Graphite Crucibles

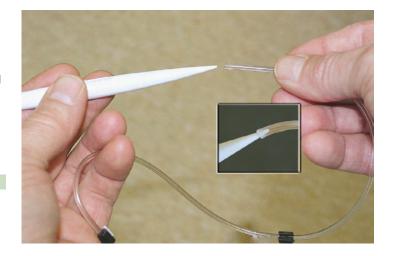
VHG Tips

We agree with many instrument manufacturers in recommending Santoprene tubing for drain lines or for cases where highest purity is critical. Santoprene has a much greater lifetime in most applications. While irrelevant for drain lines, it may add modest contamination for Zn and Sn if used for sample uptake.

Tubing for Peristaltic Pumps For ICP & ICP-MS

"3 Bridge" Peri-Pump	Tubing				
	Flexible PVC	Solvent Flex	Silicone	Viton™	Santoprene™
Quantity Per Pack	12	12	6	6	6
Length (in.)	17.9	17	15.7	15.7	15.7
No. of Bridges	3	3	3	3	3
Bridge Interval (in.)	2.8	3.2	2.6	3.2	2.8
I.D. mm (in.) /Color	Product No.	Product No.	Product No.	Product No.	Product No.
0.19 (0.007")-oran/red	D180215				
0.38 (0.015")-oran/grn	D180244				
0.64 (0.025")-oran/white	D180254		D180264	D180266	
0.76 (0.03")-blk/blk	D180218	D180279			D180270
0.89 (0.035")-oran/oran	D180206	D180280	D180225	D180234	D180249
1.02 (0.04")-white/white	D180214		D180257		D180271
1.14 (0.045")-red/red	D180204	D180278	D180227	D180223	D180269
1.52 (0.06")-yell/blue	D180221				D180242
3.18 (0.125")-blk/white	D180277				

"1 Bridge" Pump Tubing for Leeman Labs® ICP Spectrometers					
Description	Material	ID mm (in)	Leeman Product No.	Product No.	
Sample Uptake	PVC	0.51mm (0.020")	309-3551	D180217	Pack of 12
Sample Uptake	Solvent Flex	0.51mm (0.020")	309-3550	D180229	Pack of 12
Sample Drain	PVC	1.14mm (0.045")	309-3538	D180220	Pack of 12
Sample Drain	Solvent Flex	1.14mm (0.045")	309-3536	D180231	Pack of 12


Flaring Tool for Peri-Pump Tubing

The ends of peristaltic pump tubing almost always need to be stretched to get a secure connection. Our flaring tool will work for all sizes, is rugged and won't contaminate or corrode.

Product No.

D180AWLP

For flared tubing, please inquire.

Mixing Tees for Sample Introduction For ICP & ICP-MS

The use of a mixing tee to automatically combine two liquid streams, such as the sample and the internal standard, is gaining widespread popularity. VHG carries two types of tees: a simple plastic barbed tee and a 100% PTFE system. Both feature inert materials and low dead volume. If you have been considering an expensive auto-dilutor for your ICP or ICP-MS, try a simple mixing tee first - you may find that you don't need the expense or hassle.

Plastic Barbed Mixing Tee (TJA Type)

The plastic barbed mixing tee is ideal for many ICP and ICP-MS applications. Flexible PVC uptake tubing is used for each leg. A zero dead-space connector combines the liquid streams and a PTFE tube mixes and then delivers the combined solutions to the nebulizer.

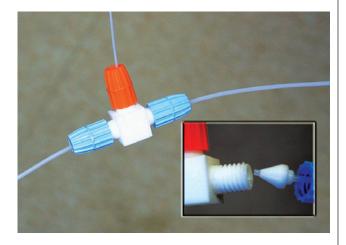
TJA Type	Color Code	PTFE Exit Line
"Leg" 1	oran/oran	0.56mm
"Leg" 2	oran/green	0.38mm
Product No. D18	0243	

PTFE Mixing Tee System

Suggested Use #1: Adding an internal standard

When an internal standard is teed into the sample stream, the analyst is spared the labor of having to add it to each sample. In addition, dilution takes place (see table below). This is an advantage since many samples require a set, consistent dilution.

Suggested Use #2: Online dilution


If you use a standard nebulizer with an approximate 1 mL/min liquid flow, you can create a 1:1 dilution by using two orange/orange legs. Greater or lesser dilutions can be achieved as desired (see chart below). VHG's new 100% PTFE mixing tee system is made from the best components, is completely configurable, has color-coded ends, and will likely last for years. Call us to configure your set.

Examples (call for others	Sample diln achieved	. Nebulizer liquid flow	Peri tubing leg #1	Peri tubing leg #2	PTFE tube leg #3
1	Large dilution (1:20)	0.7 - 1.0	orange/red diluted about 1:20 (95%)	orange/orange diluted about 5%	(0.7mm ID) combined solutions
2	1:5	0.7 - 1.0	orange/orange diluted about 20%	orange/green diluted about 80%	(0.7mm ID) combined solutions
3	1:1	0.7 - 1.0	black/black diluted about 50%	black/black diluted about 50%	(0.7mm ID) combined solutions

Product No. (PTFE Tee Only)*

D180TEE

^{*} Pump tubing must be ordered separately

Section 4 Consumables

Autosampler Cups & Tubes

ICP & ICP-MS Consumables

- Peristaltic Pump Tubing
- Mixing Tees
 Nebulizers
 Torches & Spray-Chambers
 Cones

AA & GFAA Consumables XRF Consumables Graphite Crucibles

VHG Tips

Concentric Nebulizer types:

"A" types have the nozzle and inner capillary flush with each other and the end tip is flat.

"C" and "K" types have a recessed capillary that handles high dissolved salts.

Quartz is pure ${\rm SiO_2}$ and will offer lower backgrounds (ICP-MS) for some elements, such as B, Na & K. The benefit will only be apparent if the other sample introduction components of the instrument correspond.

Nebulizers For ICP & ICP-MS

- ◆ Extensive Line of High Quality Nebulizers
- ◆ Designed to Meet or Exceed Original Specifications
- ◆ Direct Replacement Items and Upgrade Potential!

Replacement Nebulizers

Concentric Type Glass Nebulizers				
Description	Liquid flow (mL/min)	Argon back pressure (psi)	Product No.	
A-Type, 1.0 Lpm Ar	1.0	30	GNB-75	
A-Type, 1.0 Lpm Ar	2.0	30	GNB-76	
A-Type, 1.0 Lpm Ar	3.0	30	GNB-77	
C-Type, 1.0 Lpm Ar	1.0	30	GNB-70	
C-Type, 1.0 Lpm Ar	2.0	30	GNB-71	
C-Type, 1.0 Lpm Ar	3.0	30	GNB-72	
K-Type, 0.7 Lpm Ar	3.0	30	GNB-80	
K-Type, 0.7 Lpm Ar Quick Disconnect	3.0	30	GNB-80QD	
K-Type, 0.7 Lpm Ar	2.0	30	GNB-82	
Aerosalt - High Solids, 0.7 Lpm Ar Quick Disconnect, Argon Connect	2.0	30	GNB-65QDAC	

All nebulizers are available with sample and argon quick connection--please inquire. Quartz replacement nebulizers are available upon request.

Cross-Flow (CF) or V-Groove Nebulizers			
	Specifications	Product No.	
Fixed CF	High Flow (Agilent/HP)	GNB-94	
Fixed CF	Fits 34mm Spray Chamber	GNB-92S	
Fixed CF	Fits 35mm Spray Chamber	GNB-92	
Fixed CF	High Solids (Agilent/HP)	GNB-93	
V-Groove	Noordermeer MDSN, Quick Disconnect, Argon Connect	GNB-10QDAC	
Modified Lichte	MDSN Nebulizer, 1 Lpm Ar	GNB-20S	

MEINHARD°

Concentric Type Nebulizers			
Description	Liquid flow (mL/min)	Argon back pressure (psi)	Product No.
A-Type-Quartz	0.5	30	TQ-30-A0.5
A-Type-Quartz	0.5	50	TQ-50-A0.5
A-Type-Quartz	3.0	30	TQ-30-A3
A-Type-Glass	2.0	30	TR-30-A2
A-Type-Glass	3.0	30	TR-30-A3
C-Type-Glass	2.0	30	TR-30-C2
C-Type-Glass	3.0	30	TR-30-C3
C-Type-Glass	0.5	50	TR-50-C0.5
C-Type-Glass	1.0	50	TR-50-C1
K-Type-Glass	2.0	30	TR-30-K2
K-Type-Glass	3.0	30	TR-30-K3

We Do Not Recommend Ultrasonic Cleaning Of Nebulizers.

Nebulizers For ICP & ICP-MS

VHG Labs is an Authorized Distributor of Glass Expansion Products.

For information on Glass Expansion nebulizers or other sample introduction components, please inquire.

Burgener Enhanced Parallel Path Nebulizers

All Burgener Nebulizers have excellent stability and sensitivity, and fit standard spray chambers as direct replacements of glass concentrics. Burgener Nebulizers have no natural aspiration and must have the sample pumped to the nebulizer.

Name	Mfg. No.	Nebulizer Description	VHG Part No.
T2100	T2100	High solids, inert wide bore (750um) Teflon® nebulizer. Designed to replace T2002 and BTN. Ideal for samples with large undissolved particulates - virtually unpluggable. Liquid flow 0.5mL/min to 3.0mL/min. Operates on standard pressures of 30-45psi.	T2100
PEEK™ Mira Mist	PMM4000	Standard flow, inert *PEEKTM nebulizer. Teflon® sample and gas capillaries, *PEEKTM body. Suitable for most samples, excluding concentrated acids, strong bases or some organic solvents. Tolerates high salts and undissolved particulates. Liquid flow 0.2mL/min to 2.5mL/min. Operates on standard gas pressure of 45psi.	PMM4000
Teflon® Mira Mist	TMM3500	Standard flow, inert Teflon® nebulizer. Teflon® capillaries and body. Best choice for aggressive samples such as concentrated acids. Tolerates high salts and undissolved particulates. Liquid flow 0.2mL/min to 2.5mL/min. Operates on standard gas pressures of 35-45psi.	TMM3500
Ari Mist	AM5000	Low flow, inert *Peek® nebulizer. Teflon® sample and gas capillaries. Designed for particulate-free samples. Black *PEEK™ body. Liquid flow 0.050mL/min to 1.0mL/min. Operates at standard gas pressures of 40-50psi.	AM5000
Ari Mist HP	AMHP5500	Ultra low flow, inert *Peek® nebulizer. Teflon® sample and gas capillaries. Brown *PEEK™ body designed for particulate-free samples. Liquid flow 0.005mL/min to 1.0mL/min. Operates at higher gas pressure (80psi). Excellent for LC/ICP/ICP-MS.	AMHP5500

^{*} PeekTM Polymer: Polyether Ether Ketone

Please supply the name and model number of the instrument, so that the nebulizer will be supplied with correct fittings for the instrument's gas line.

To order, call (+1) 888.622.7660 or fax (+1) 603.622.5180

Section 4 Consumables

Autosampler Cups & Tubes

ICP & ICP-MS Consumables
Peristaltic Pump Tubing
Mixing Tees

► Nebulizers
Torches & Spray-Chambers
Cones

AA & GFAA Consumables XRF Consumables Graphite Crucibles

VHG Tips

To avoid downtime, it is good to keep spare items of all instrument glassware.

Even though intact, torches with white, metallic-looking or brownish surface discolorations may ignite with greater difficulty.

The injector tip of the ICP-MS torch can be a source of "background," especially for Na, K, Li, and B. In some cases, operating with higher nebulizer and/or auxiliary argon flow can reduce this.

Torches, Accessories & Spray-Chambers For ICP & ICP-MS

Agilent (Hewlett Packard) ICP-MS Supplies For 450	00, 7500 & 7700	
ICP-MS Torch and Torch Accessories	Mfg. No.	Product No.
Standard Torch, 2.5mm Injector (Agilent 7500), 2 Projections, HMI Compatible	G3270-67002	GHP-01
Quartz Bonnet (Agilent 7500)	G1833-65421	GHP-25
One Piece Torch, 2.5mm Injector (Agilent 7700)	G3280-80001	GHP-51
One Piece Torch, 1.5mm Injector (Agilent 7700)	G3280-80004	GHP-54
One Piece Torch, 1.0mm Injector (Agilent 7700)	G3280-80005	GHP-55
Spray Chambers and Nebulizers		
Scott Chamber, Inner/Outer Tube Flush, Drain & Exit 90°, Quartz (HP 4500, Agilent 7500)	G1820-65337	GHP-13
C-Type Concentric Nebulizer, 1 Lpm Ar, 30psi, 1mL/min		GNB-70
Meinhard A-Type Concentric Quartz Nebulizer, 30psi, 2mL/min	G1820-65138	TQ-30-A2
Glass Expansion MicroMist Nebulizer, 1 Lpm Ar 35psi, 0.4mL/min		AR35-1-FM04EX
Platinum Torch Shields		
Long Life Platinum Shield (4500)	G1820-65357	CHP5003
Long Life Platinum Shield (7500)	G1833-65419	CHP5004

HORIBA Jobin Yvon ICP-AES Supplies		
ICP Torch and Torch Accessories	Mfg. No.	Product No.
Demountable Torch Assembly, Complete	21.356.110	GISA-40
Outer Quartz Tube, 71mm, Radial	31.023.722	GISA-50
Outer Quartz Tube, Axial	31.031.099	GISA-70
Inner Quartz Tube	31.023.723	GISA-52
PTFE Centering Ring	31.023.724	GISA-53
PTFE Insert	31.021.730	GISA-55
Alumina Injector	31.021.589	GISA-58
Alumina Injector and Teflon Insert	21.356.130	GISA-61
Spray Chambers and Nebulizers		
Cyclonic Spray Chamber, 4mm Drain	31.031.279	GISA-15
C-Type Concentric Nebulizer, 1 Lpm Ar, 50psi, 1mL/min	47.929.001	GNB-70P
Meinhard C-Type Concentric Glass Nebulizer, 50psi, 1mL/min	47.929.001	TR-50-C1
Meinhard K-Type Concentric Glass Nebulizer, 30psi, 3mL/min	47.929.005	TR-30-K3

Leeman Labs ICP-AES Supplies		
ICP Torch and Torch Accessories	Mfg. No.	Product No.
1 Piece Torch with Ball Joint, Aqueous	120-3748	GLMN-20
1 Piece Torch with Ball Joint, Organics	120-3749	GLMN-22
Demountable Torch	318-0001	GLMN-43
Spray Chambers and Nebulizers		
Spray Chamber, Scott, Radial	120-3751	GLMN-25
C-Type Concentric Nebulizer, 1 Lpm Ar, 30psi, 3mL/min		GNB-72
Glass Expansion Conikal Nebulizer, 1 Lpm Ar, 30psi, 3mL/min	318-00078	AR30-1-FC3E

Torches, Accessories & Spray-Chambers For ICP & ICP-MS

PerkinElmer ICP-AES Supplies		
Optima 3000 Series Radial		
CP Torch and Torch Accessories	Mfg. No.	Product No.
Torch Body, Optima, Radial	N069-0568	GPE1-04
Torch Bonnet, Flat Edge (Optima post 9/94)	N069-5456	GPE1-13
Quartz Injector, 1.2mm	N068-1631	GPE2-33
Spray Chambers		
Cyclonic Spray Chamber, Optima		GPE0-19
Optima 3000XL & SC(X)		
CP Torch and Torch Accessories	Mfg. No.	Product No.
Torch Body, Optima XL	N069-5379	GPE1-11
Quartz Injector, 2.0mm	N069-5442	GPE2-41
Alumina Injector, 2.0mm	N069-5362	GPE2-50
Torch Bonnet	N069-1664	GPE1-15
Optima 3000 Series DV		
ICP Torch and Torch Accessories	Mfg. No.	Product No.
Torch Body, Optima DV, 1 Slot	N069-1662	GPE1-14
Torch Bonnet	N069-1664	GPE1-15
Purge Tube Window, Radial, Short	N069-0672	GPE2-73
Quartz Injector, 2.0mm	N069-5442	GPE2-41
Alumina Injector, 2.0mm	N069-5362	GPE2-50
Spray Chambers and Nebulizers		
Cyclonic Spray Chamber	N812-2188	GPE0-18DV
C-Type Concentric Nebulizer, 1 Lpm Ar, 50psi, 1mL/min	0047-2022	GNB-70P
K-Type Concentric Nebulizer, 0.7Lpm Ar, 30psi, 3mL/min	N068-1574	GNB-80
Optima 2000/4000/5000/7000DV & 4000/5000V		
CP Torch and Torch Accessories	Mfg. No.	Product No.
Torch Body, Optima 2000/4000/5000/7000DV, 1 Slot	N077-0338	GPE1-16
Torch Body, Optima 4300V/5300V	N077-1500	GPE1-17A
Torch Body, Optima 4300V/5300V/7300V, Wear Metals		GPE1-17W
Glass Expansion Demountable Ceramic Torch, Optima 4300V/5300V/7300V	N077-7052	31-808-2815
Torch Bonnet	N077-5289	GPE1-25
Alumina Injector, 2.0mm	N077-5177	GPE1-42
Alumina Injector, 1.2mm, Optima 4300V/5300V	N077-1531	GPE2-54
Quartz Injector, 1.2mm	N077-5226	GPE2-77
Axial Purge Window, Optima 2000DV	0999-2731	GPE2-65
Axial Purge Window, Optima 4000/5000/7000DV	N077-1116	GPE2-67
Radial Purge Window, Optima 4000/5000/7000DV	N077-0322	GPE2-80
Purge Tube Window, Radial, Short, Optima 2000DV	N069-0672	GPE2-73
Quartz Injector, 2.0mm	N077-5014	GPE2-74
Spray Chambers and Nebulizers		
Cyclonic Spray Chamber, no Baffle, with Neb Adapter	N077-6052	GPE0-29
	N077-6053	GPE0-30
Cyclonic Spray Chamber Barried with Neb Adapter		
Cyclonic Spray Chamber, Baffled, with Neb Adapter C-Type Concentric Nebulizer, 1 Lpm Ar, 50psi, 1mL/min	0047-2022	GNB-70P

Section 4 Consumables

Autosampler Cups & Tubes
ICP & ICP-MS Consumables
Peristaltic Pump Tubing
Mixing Tees
Nebulizers

► Torches & Spray-Chambers Cones

AA & GFAA Consumables XRF Consumables Graphite Crucibles

VHG Tips

The tip of the torch injector (central tube) ought to be regularly inspected for build-up of sample residue.

Even small amounts of material can disrupt the even flow of sample aerosol.

To avoid downtime, it is good to keep spare items of all instrument glassware.

Even though intact, torches with white, metallic-looking or brownish surface discolorations may ignite with greater difficulty.

Torches, Accessories & Spray-Chambers For ICP & ICP-MS

PerkinElmer Sciex ICP-MS Supplies		
Elan 5000/6X00/9000/DRC II		
ICP-MS Torch and Torch Accessories	Mfg. No.	Product No.
Torch Body, Elan	N812-2006	GSC4-10
Quartz Injector, 2.0mm	N812-5029	GSC2-35
Quartz Injector, 2.0mm, 6100 DRC & DRC II	WE02-3948	GSC4-30
Spray Chambers and Nebulizers		
Cyclonic Spray Chamber	N812-0150	GSC3-19MS
Cyclonic Spray Chamber, 6100 DRC, Quartz	WE02-5221	GSC4-20
Meinhard A-Type Quartz Concentric Nebulizer, 30psi, 3mL/min	WE02-4371	TQ-30-A3

Spectro ICP-AES Supplies				
Spectroflame and Ciros				
ICP Torch and Torch Accessories	Mfg. No.	Product No.		
EOP Flared End Torch, with 2.5mm injector	48105052	GSP-40		
Demountable EOP Torch	48206007	GSP-42		
Torch, Fixed, Spectroflame, 1.8mm, Standard		GSP-05		
Torch, Fixed, Spectroflame, 1.8mm, Standard with Fittings	75060596	GSP-05F		
Demountable Torch, Spectroflame	48206002	GSP-06		
Spray Chambers and Nebulizers				
Cyclonic Spray Chamber for Modified Lichte	48105061	GSP-27		
Modified Lichte MDSN Nebulizer, 1 Lpm Ar	48205036	GNB-20S		
C-Type Concentric Nebulizer, 1 Lpm Ar, 30psi, 1mL/min	76060510	GNB-70		
Meinhard C-Type Glass Concentric Nebulizer, 30psi, 1mL/min	76060510	TR-30-C1		

Thermo Fisher Scientific (VG) ICP-MS Supplies			
Axiom, PlasmaQuad 1,2,3 & PQ ExCell			
ICP-MS Torch and Torch Accessories	Mfg. No.	Product No.	
Torch, 1.5mm	3201192	GVG-05	
Torch Bonnet		GVG-25	
Torch Bonnet Cap	1200274	GVG-26	
Torch Bonnet, 72mm	3204703	GVG-28	
Spray Chambers and Nebulizers			
Conical Spray Chamber w/ Impact Bead, Quartz	3600170	GVG-13	
Scott Spray Chamber, Water-Cooled, Quartz	3200841	GVG-16	
C-Type Concentric Nebulizer, 1 Lpm Ar, 30psi, 1mL/min	1040894	GNB-70	
Glass Expansion Conikal Nebulizer, 1 Lpm Ar, 35psi, 1mL/min	1201318	AR35-1-FC1ET	
Glass Expansion MicroMist Nebulizer, 1 Lpm Ar, 35psi, 0.4mL/min	1201831	AR35-1-FM04E	

Torches, Accessories & Spray-Chambers For ICP & ICP-MS

Thermo Fisher Scientific (TJA) ICP-AES Supplies					
61E, Iris Advantage, Intrepid Radial, 61E Trace, Iris Al	P, Intrepid				
ICP Torch and Torch Accessories Mfg. No. Product No.					
Ceramic Base Torch, High Flow w/ 1.5mm Injector	126432-01	GTJA5-07			
Ceramic Base Torch, Trace, with 1.5mm Injector	126432-03	GTJA5-10			
Ceramic Base Torch, DV, with 1.5mm Injector		GTJA5-10DV			
Duo Torch Sleeve and Seal Kit	138563-00	GTJA0-26			
Quartz Injector, 1.5mm	125407-00	GTJA0-41			
Spray Chambers and Nebulizers					
Cyclonic Spray Chamber, Axial, Pump	139662-00	GTJA5-13			
Cyclonic Spray Chamber, Radial, Pump	139663-00	GTJA5-14			
V-Groove Nebulizer, Noordermeer MDSN, Quick Disconnect, Argon Connect		GNB-10QDAC			
K-Type Concentric Nebulizer, 0.7Lpm Ar, 30psi, 3mL/min, Quick Disconnect, Argon Connect		GNB-80QDAC			
Meinhard K-Type Glass Concentric Nebulizer, 30psi, 2mL/min	139600-00	TR-30-K2			
Glass Expansion Conikal Nebulizer, 0.7 Lpm Ar, 30psi, 2mL/min	139184-00	AR30-07-FC2E			

Varian ICP-AES Supplies		
700-ES Series, Liberty Radial, Vista Axial		
ICP Torch and Torch Accessories	Mfg. No.	Product No.
Low Flow Torch, One Piece, Radial	20-100696-90	GVA-05
Torch Bonnet	20-100707-00	GVA-25
Low Flow Torch, One Piece, Axial, 90° Bend	20-100904-00	GVA-12
Spray Chambers and Nebulizers		
Cyclonic Spray Chamber, 8mm Top, 4mm Drain	20-100817-00	GVA-21
Noordermeer V-Groove MDSN Nebulizer		GNB-10
Aerosalt - High Solids Nebulizer, 0.7 Lpm Ar, 30psi, 2mL/min, Quick Disconnect, Argon Connect	20-100964-00	GNB-65QDAC
C-Type Concentric Nebulizer, 1 Lpm Ar, 30psi, 1mL/min	20-100765-00	GNB-70
K-Type Concentric Nebulizer, 0.7 Lpm Ar, 30psi, 3mL/min, Quick Disconnect, Argon Connect	20-101068-00	GNB-80QDAC
K-Type, High Flow Concentric Nebulizer	20-100816-00	GNB-85
Meinhard C-Type Glass Concentric Nebulizer, 30psi, 2mL/min	20-100765-00	TR-30-C2
Glass Expansion Conikal Nebulizer, 0.7 Lpm Ar, 30psi, 3mL/min		AR30-07-FC3E

Mfg. No.	Product No.
20-101007-00	GVA-34
20-101008-00	GVA-31
20-101009-00	GVA-32
20-101010-00	GVA-33
20-100765-00	GNB-70
	AR30-1-FC3E
	20-101007-00 20-101008-00 20-101009-00 20-101010-00

Section 4 Consumables

Autosampler Cups & Tubes
ICP & ICP-MS Consumables
Peristaltic Pump Tubing
Mixing Tees
Nebulizers

► Torches & Spray-Chambers Cones

AA & GFAA Consumables XRF Consumables Graphite Crucibles

VHG Tips

Nickel cones work well for many ICP-MS applications. Pttipped cones offer greater lifetime and usually require less day-to-day maintenance attention. Aggressive matrices (high in oxidizing conditions) may require Pt-tipped cones.

Platinum diameter is stated with respect to a platinum insert piece. It is the outer dimension of the insert.

ICP-MS Cones

SPECTRON cones are the world's best quality, most precisely engineered ICP-MS cones and VHG Labs is proud to be a supplier. These cones are either identical to OEM cones, or else meet and exceed OEM specifications.

Agilent (HP) ICP-MS Cones & Accessories For 4500, 7500, 7700 Series Instruments			
Cone	Mfg. No.	Product No.	
Nickel Sampler (25mm Ni insert)	G1820-65238	CHP1001-Ni	
Nickel Sampler (7700)	G3280-67040	CHP2001-Ni	
Platinum (10mm Pt insert) Sampler (4500, 7500)	G1820-65239	CHP1006-Pt	
Platinum (10mm Pt insert) Sampler (7700)	G3280-67036	CHP2006-Pt	
Nickel Skimmer (7500ce)	G3270-65024	CHP1002CE-Ni	
Nickel "S" Skimmer (7700)	G3280-67066	CHP2002S-Ni	
Nickel "X" Skimmer (7700)	G3280-67041	CHP2002X-Ni	
Platinum Skimmer (7500ce, 7500cs)	G1833-65132	CHP1008CS-Pt	
Platinum "X" Skimmer in Copper Base (7700)	G3280-67060	CHP2008X-Pt/Cu	
Platinum "S" Skimmer in Copper Base (7700)	G3280-67064	CHP2008S-Pt/Cu	
eSPEC Platinum Shield Plate (7500)	G1833-65419	CHP5004e	

PerkinElmer Sciex ICP-MS Cones & Accessories For 5000, 6000, 6100, 9000, DRC Series Instruments			
Cone	Mfg. No.	Product No.	
Nickel Sampler (6000, 6100, 9000)	WE02-1140	CSC2011-Ni	
Platinum Sampler (6000, 6100, 9000)	WE02-7802	CSC2013-Pt	
eSPEC Platinum Sampler (6000, 6100, 9000)	WE02-7802	CSC2013-Pte	
Nickel Skimmer (6000, 6100, 9000)	WE02-1137	CSC2012-Ni	
Platinum Skimmer (6000, 6100, 9000)	WE02-7803	CSC2014-Pt	
eSPEC Platinum Skimmer (6000, 6100, 9000)	WE02-7803	CSC2014-Pte	

Cone Refurbishment Program offered by VHG Labs:

Platinum parts are refurbished at no charge for the life of the part. Non-Spectron cones may also be refurbished at a nominal charge (please call). This applies to cones where their condition is suitable for refurbishment and not those chemically or mechanically degraded to a point where the metal is compromised.

e•SPEC™ Cones Now Available.

Unprecedented value is offered with Spectron's new line of enhanced performance ICP-MS cones. Call us or visit our website for details. Platinum cones at 1990's prices!

ICP-MS Cones

Thermo Fisher Scientific (VG, Finnigan) ICP-MS Cones & Accessories

For VG X-Series, PlasmaQuad, Axiom, PQ ExCell, Genesis and Finnigan Element, Element 2, Neptune Series Instruments

Cone	Mfg. No.	Product No.
Nickel Sampler, 100% Ni (VG X-Series)	3600812	CVG1021-Ni
Nickel Sampler, Cu Core (VG X-Series)	3600812	CVG1021-Ni/Cu
Nickel Sampler (all VG models except X-Series)	3004661	CVG1001-Ni
Platinum (15.2mm Pt insert) Sampler (all VG models except X-Series)	3601289	CVG1006A-Pt
Nickel Skimmer (VG X-Series)	3600811	CVG1022-Ni
Nickel Micro-Skimmer (all VG models except X-Series)	3200860	CVG1004-Ni
Platinum Skimmer (all VG models except X-Series)	N/A	CVG1028-Pt
Nickel Sampler, Cu Core (Element, Element 2, Neptune)	1044520	CT1001-Ni/Cu
eSPEC Platinum (7.62mm Pt insert) Sampler (Element, Element 2, Neptune)	1067500	CT1006-Pte
Nickel Skimmer (Element, Element 2, Neptune)	1067600	CT1002A-Ni
Platinum Skimmer, Ni base (Element, Element 2, Neptune)	1047510	CT1007-Pt
Platinum Guard Electrode (Element, Element 2, Neptune)	1126640	CT5004

VHG Labs' ICP-MS Maintenance Kit

VHG Labs has assembled an ICP-MS Maintenance Kit designed to provide the ICP-MS analyst with the right tools for the job of cleaning and restoring cones to their "as-new" performance. Cone maintenance and cone restoration improve analytical performance, reduce the time needed to tune and optimize, reduce interference, and can save substantial money!

ICP-MS cones take the brunt of all sample by-products and also experience high temperature which leads to build-up of residue on the cone and reduced performance. Ion lenses also experience issues with build-up of residue. We are certain that the items in this kit will result in better and quicker cone cleaning. If you have never used proper polishing felt or cloth, the right swab, or diamond paste, then you will be in for a pleasant experience. Our Maintenance Kit is designed for any brand or type of ICP-MS cone.

Our ICP-MS Cone and Lens Maintenance Kit Includes:

- Diamond abrasive paste compound
- Diamond abrasive lapping paper: coarse and fine
- Alumina abrasive powder: coarse and fine
- ◆ Lint-free, "clean-room" quality polyester cloths
- Polyester polishing felt (3/8")
- Wood-stick cotton swabs
- ◆ Pointed-tip plastic foam swabs
- Magnifier lens
- ◆ Instruction guide

Description	Product No.	
ICP-MS Maintenance Kit	CVHG-MNTKIT1	

Section 4 Consumables

Autosampler Cups & Tubes

ICP & ICP-MS Consumables
Peristaltic Pump Tubing
Mixing Tees
Nebulizers
Torches & Spray-Chambers
► Cones

AA & GFAA Consumables XRF Consumables Graphite Crucibles

VHG Tips

We guarantee the quality of our graphite consumables!

We supply only top quality, pure, high-density graphite and pyrolytic graphite-coated parts.

Tubes are pyrolytic graphitecoated unless otherwise stated.

GFAA Tubes & Parts

All tubes are pyrolytic graphite-coated unless otherwise stated

GBC	Description	Mfg. No.	Product No.	
Graphite Tube	Pre-Inserted Omega Platform	N/A	FGBC25	
Graphite Tube	Non-Platform	99-0059-00	FGBC59	
Platform	Solid Pyro Graphite (for FGBC59)	99-0060-00	FGBC60	
Electrode Set	Set of 2	45-0006-00	FGBC06	
Graphite Shroud	GF 3000	45-0004-00	FGBC04	

Hitachi	Description	Mfg No.	Product No.
Graphite Cuvette	Pre-Inserted Forked Platform	190(ANO)-0028	FHIT55
Contact Rings	Set of 2, AD 20mm	180-7401	FHIT01

PerkinElmer	Description	Mfg. No.	Product No.
Graphite Tube	Pre-Inserted Platform	B011-2660	FPE930
Graphite Tube	Pre-Inserted Forked Platform	B050-5057	FPE57
Graphite Tube	Std Tube for L'Vov Platform	B012-1092, B010-9322	FPE92
L'Vov Platform	Solid Pyro Graphite (for FPE92)	B012-1091, B010-9324	FPE91
Graphite Tube	Non-Platform	B013-5653, B009-1504	FPE53
Graphite Tube	Non-Platform, Uncoated	B007-0699	FPE99
Zeeman Contact Set	Set of 2	B011-6823	FPE61
HGA Contact Set	Set of 2, with Sensor Hole	B012-8490	FPE63

For other GFAA tubes and parts, please inquire.

GFAA Tubes & Parts

All tubes are pyrolytic graphite-coated unless otherwise stated

Thermo Fisher Scientific Unicam/ATI	Description	Mfg. No.	Product No.
0	FI O T are	0.400 000 050 44	FATIM
Graphite Cuvette	ELC Type	9423 393 95041	FATI41
Graphite Cuvette	Omega Platform	9423 490 20101	FATI20101
Graphite Cuvette	Ridged	9423 393 95071	FATI71
Graphite Cuvette	Ridged, Uncoated	9423 393 95031	FATI31
Graphite Cuvette	Standard, Unridged	9423 393 95091	FATI95091

Varian	Description	Mfg. No.	Product No.
Graphite Tube	Pre-Inserted Omega Platform	N/A	FVAR37
Graphite Tube	Partitioned Type	63-100012-00	FVAR12
Graphite Tube	Plateau Type	63-100011-00	FVAR11
Bone Platform	Solid Pyro Graphite (for FVAR11)	63-100013-00	FVAR13
Zeeman Electrodes	Set of 2	63-100017-00	FVAR17

For other GFAA tubes and parts, please inquire.

Hydride and Mercury Cold Vapor Quartzware

VHG provides quartz components for commercial hydride generators that are guaranteed to meet your application. These are direct match components.

PerkinElmer Quartz Components			
Description	Material	Mfg. No.	
Cell for MHS-10 [™] (no rings or sleeves incl.)	Pure Quartz	B009-4415	GPEQC55
Cell for MHS-20 [™] (with UV windows)	Pure Quartz	B009-7693	GPEQC65

Varian Quartz Components				
Description	Material	Mfg. No.	VHG Product No.	
Mercury Flow Through Cell (VGA-76/77™)	Pure Quartz	99-100407-00	GVARQC30	
Hydride Absorption Cell (VGA-76/77™)	Pure Quartz	99-100400-00	GVARQC35	
Gas/Liquid Separator (VGA-76™)	Pure Quartz	99-100402-00	GVARQC40	
Gas/Liquid Separator (VGA-77™)	Pure Quartz	99-100711-00	GVARQC65	
Atom Concentrator Tube (ACT-80™)	Pure Quartz	99-100544-00	GVARQC60	

For pricing on other quartz cells, please inquire.

Section 4 Consumables

Autosampler Cups & Tubes ICP & ICP-MS Consumables

AA & GFAA Consumables

- ► GFAA Tubes & Parts
- Hydride Quartzware Hollow Cathode Lamps

XRF Consumables
Graphite Crucibles

VHG Tips

Coded lamps are recognized by the instrument hardware automatically. Performance is identical for coded and noncoded lamps.

Expand the range of your AA! Multi-Element hollow cathode lamps offer a convenient option to expand the range of your AA.

We guarantee our lamps. VHG lamps are equal to or better than those supplied by the AA manufacturers' parts departments.

Lamps have a finite shelf life. Consider replacing your old lamps to enhance results.

Hollow Cathode Lamps For AA & GFAA

- Highest available quality line sources for Atomic Absorption
- Most advanced, pure cathode materials and inert fill gas
- ◆ Fast warm-up times
- High output, stable and with low noise
- ◆ Long operating life with a five-year shelf life

Single-Element Hollow Cathode Lamps

Type of Lamp and the Instrument Fitted:	1.5" Diam., 2-pin, Non-Coded for GBC, Hitachi, Shimadzu, Thermo, Varian	2.0" Diam., 9-pin, Non-Coded for Older PerkinElmer Instrumentation	2.0" Diam., 4-pin, Ca- bleless for Perkin- Elmer AAnalyst* (timer excluded)
Element	Product. No.	Product. No.	Product. No.
Aluminum Al	LAL	LPEAL	LPE4AL
Antimony Sb	LSB	LPESB	LPE4SB
Arsenic As	LAS	LPEAS	LPE4AS
Barium Ba	LBA	LPEBA	LPE4BA
Beryllium Be	LBE	LPEBE	LPE4BE
Bismuth Bi	LBI	LPEBI	LPE4BI
Boron B	LB	LPEB	LPE4B
Cadmium Cd	LCD	LPECD	LPE4CD
Calcium Ca	LCA	LPECA	LPE4CA
Chromium Cr	LCR	LPECR	LPE4CR
Cobalt Co	LCO	LPECO	LPE4CO
Copper Cu	LCU	LPECU	LPE4CU
Gold Au	LAU	LPEAU	LPE4AU
Iron Fe	LFE	LPEFE	LPE4FE
Lead Pb	LPB	LPEPB	LPE4PB
Lithium Li	LLI	LPELI	LPE4LI
Magnesium Mg	LMG	LPEMG	LPE4MG
Manganese Mn	LMN	LPEMN	LPE4MN
Mercury Hg	LHG	LPEHG	LPE4HG
Molybdenum Mo	LMO	LPEMO	LPE4MO
Nickel Ni	LNI	LPENI	LPE4NI
Palladium Pd	LPD	LPEPD	LPE4PD
Platinum Pt	LPT	LPEPT	LPE4PT
Potassium K	LK	LPEK	LPE4K
Selenium Se	LSE	LPESE	LPE4SE
Silicon Si	LSI	LPESI	LPE4SI
Silver Ag	LAG	LPEAG	LPE4AG
Sodium Na	LNA	LPENA	LPE4NA
Strontium Sr	LSR	LPESR	LPE4SR
Thallium TI	LTL	LPETL	LPE4TL
Tin Sn	LSN	LPESN	LPE4SN
Titanium Ti	LTI	LEPTI	LPE4TI
Vanadium V	LV	LPEV	LPE4V
Zinc Zn	LZN	LPEZN	LPE4ZN

^{*} Timers are no longer supplied with Perkin Elmer 4-pin lamps. If you require timers, please order LTIMER with each lamp. See Page 99.

Hollow Cathode Lamps For AA & GFAA

Timer for 2.0" Diameter, 4-pin, Cableless Lamp for PerkinElmer AAnalyst			
Description	Instrument	Product No.	
10,000 mA/hour Timer	LPE4xx Series Lamps	LTIMER	

Multi-Element Hollow Cathode Lamps

1.5" Diam., 2-pin, Non-Coded for GBC, Hitachi, Shimadzu, Thermo, Varian	1.5" Diam., 4-pin, Coded for GBC, Varian	2.0" Diam., 9-pin, Non-Coded for Older Perkin- Elmer Instrumentation	2.0" Diam., 12-pin, Coded for PerkinElmer
Product No.	Product No.	Product No.	Product No.
L506		L606	
L503		L603	
L539			
L507		L607	
L870	L870C	L970	L970C
L873	L873C	L973	L973C
L516		L616	
L524		L624	
L526		L626	
L872		L972	
L530		L630	
L871	L871C	L971	L971C
L537		L637	
	Non-Coded for GBC, Hitachi, Shimadzu, Thermo, Varian Product No. L506 L503 L539 L507 L870 L870 L872 L524 L526 L872 L530 L871	Non-Coded for GBC, Hitachi, Shimadzu, Thermo, Varian 4-pin, Coded for GBC, Varian Product No. Product No. L506 L503 L539 L507 L870 L870C L873 L873C L516 L524 L526 L872 L530 L871 L871C L871C	Non-Coded for GBC, Hitachi, Shimadzu, Thermo, Varian 4-pin, Coded for GBC, Varian Non-Coded for Older Perkin-Elmer Instrumentation Product No. Product No. Product No. L506 L606 L503 L603 L539 L607 L870 L870C L970 L873 L873C L973 L516 L616 L624 L524 L626 L626 L872 L972 L630 L871 L871C L971

^{*}For other multi-element lamp choices, please inquire.

Deuterium Background Correction Lamps

Deuterium background correction lamps provide accurate and fast correction over the widest possible absorbance range and typically last in excess of 1100 hours.

Description	Instrument	Product No.
Deuterium Arc Lamp 10 Volt	GBC UV Cintra & UV-VIS 914/916, 918/920	P702
Deuterium Arc Lamp 10 Volt	Hitachi Instruments (most)	P703
Deuterium Arc Lamp 3 Volt	PerkinElmer AAS & AAnalyst 600, 700, 800	P735
Deuterium Arc Lamp 10 Volt	Varian 75 Series, AA, DMS 100, Spectra, UV Superscan	P706

^{*}For other Deuterium lamp choices, please inquire.

Section 4 Consumables

Autosampler Cups & Tubes ICP & ICP-MS Consumables

AA & GFAA Consumables GFAA Tubes & Parts Hydride Quartzware

► Hollow Cathode Lamps

XRF Consumables
Graphite Crucibles

Section 4 Consumables

VHG Tips

VHG's XRF Cups feature a unique Tri-Lock Taut-Film[™] design that ensures a wrinkle-free, leak resistant and taut window film.

Only a limited sample available?

When sample is limited, smaller sample cups can be used with accurate centering over the aperature made possible with a VHG Cup Positioning Guide. See Page 103.

Analyzing powders or non-volatile liquids in vacuum?

Try Spectro Cup II with Baffle Plus™ Cap. Superior, vented baffle system features efficient pressure equalization, vapor recirculation, particle entrapment, and greater sample stability.

Why buy VHG's pellet caps?

- Firm support of samples & less susceptible to damage
- Easy & convenient storage
- Accommodated by all XRF spectrometers

VHG's pellet caps are made of thin wall aluminum with either straight side-walls or tapered side-walls. They support and reinforce samples in cup presses and are useful for holding, transporting and storing powder samples. They have a painted exterior and eject simply from the mold assembly.

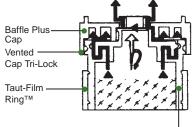
XRF Sample Cups

VHG's XRF Cups feature a unique Tri-Lock Taut Film™ design that ensures a wrinkle-free, leak-resistant and taut window film.

Double Open-End Cups

VHG's double open-end cups come with open or vented caps with a proprietary lift tab feature that enables more reliable sample handling of full sample cups. Samples are top loaded for maximum ease and are self-nesting. These cups support thin film and microporous sheets for sealing.

Open Cap Open Cap Tri-Lock Taut-Film RingTM Double Open-End Cup O.D. (mm) 25 17 24 31 25 24 40 31 24 40 31 34


O.D. (mm)	I.D. (mm)	Height (mm)	Vol. (cc)	Product No.
25	17	24	4.6	CUP11-25S
31	25	24	8.4	CUP11-31S
40	31	24	14.0	CUP11-40S
40	31	34	22.0	CUP11-40T

Double Open-End Cup with Vented Cap (consists of 3 parts)

O.D. (mm)	I.D. (mm)	Height (mm)	Vol. (cc)	Product No.
25	17	24	4.6	CUP22-25S
31	25	24	8.4	CUP22-31S
40	31	24	14.0	CUP22-40S
45	39	34	36.7	CUP22-45T

Spectro Cup II[®] with Baffle Plus™ Cap (consists of 4 parts)

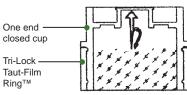
O.D. (mm)	I.D. (mm)	Height (mm)	Vol. (cc)	Product No.
31	25	29	6.8	CUP69-31S
40	31	29	11.3	CUP69-40S
45	39	39	31.0	CUP69-45T

Baffle Vented Body

Oxford Analyzers (consists of 2 parts)

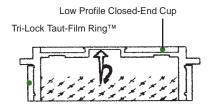
Double Open-End Cup for Oxford

Standard replacement cup. Fits directly into aluminum sample sleeve (supplied with instrument) to form a taut-film sample support with respect to the integrated o-ring. Each cup supplied with vented cap.


O.D.	I.D.	Height	Vol.	Product
(mm)	(mm)	(mm)	(cc)	No.
32	28	36	20	CUPOX-35

XRF Sample Cups

Closed End Cups


Bottom loaded to handle liquids, slurries, powders, and many volatiles or foaming liquids, where user wishes immediate back pressure of closed cell conditions. Cups are ventable for pressure equalization.

Standard Closed-End Cups (consists of 2 parts)

O.D. (mm)	I.D. (mm)	Height (mm)	Vol. (cc)	Product No.
25	17	24	4.6	CUP77-25S
31	25	24	8.1	CUP77-31S
40	31	24	14.7	CUP77-40S
45	39	34	29.0	CUP77-45T

HORIBA Analyzers (consists of 2 parts)

Closed-End Cups for HORIBA

Designed for special needs of Horiba Instruments and applications requiring low-profile cups. Feature Taut Film Ring TM and Lift Tab^{TM} .

O.D.	I.D.	Height	Vol.	Product	
(mm)	(mm)	(mm)	(cc)	No.	
43	47	18.4	17	CUPH-43	

Pellet Caps For XRF Analysis of Powders

Pellet Caps - Straight Wall

Straight wall cap design is generally recommended for briquetting materials of uniform size distribution.

Briquette Size (mm)	Product No.
32	CAP30
40	CAP38

Pellet Caps -Tapered Wall

Tapered wall cap design helps overcome briquetting difficulties and spill over for materials that resist briquetting or are of non-uniform chemistry or size.

Briquette Size (mm)	Product No.	
32	CAP32	
40	CAP40	

Section 4 Consumables

Autosampler Cups & Tubes ICP & ICP-MS Consumables AA & GFAA Consumables

XRF Consumables

➤ XRF Sample Cups
Thin Films
XRF Accessories

Section 4 Consumables

Thin Films for XRF Sample Cups

XRF sample cup films allow liquids, powders and slurries to be analyzed by X-Ray Fluorescence. VHG Labs provides a range of special films of highest quality. For selection of the ideal film, consider the material's transmission (especially important for "light elements"), purity, and physical strength.

Kapton [®] (Polyimide)	Thickness (microns)	Film Size & Shape	Product No.
Features high strength, high purity, chemical robustness, and withstands prolonged X-Ray irradiation.	7.6 Micron	3" x 50' Roll	FKP30-R15
	12.7 Micron	3" x 50' Roll	FKP50-R15
		Also available in pre-	cut circles or squares

Mylar [®]	Thickness (microns)	Film Size & Shape	Product No.
Mylar (polyethylene-terephthalate) film is economical, strong and offers good chemical resistance. It is well suited for light elements analysis (Note: may contain Ca, Fe, P, Sb, Zn).	2.5 Micron	3" x 300' Roll	FMY10-R3
	3.6 Micron	3" x 300' Roll	FMY15-R3
	6 Micron	3" x 300' Roll	FMY25-R3
	6 Micron	3" x 3" Squares	FMY25-33
	6 Micron	2.5" Dia. Circles	FMY25-C64
		Also available in 1.5 &	12.7 micron thickness

Optilene-XF [™]	Thickness (microns)	Film Size & Shape	Product No.
Highest grade, proprietary film featuring optimal transmission, purity, strength, chemical resistance, and thermal stability. Good for full range of XRF analytes, including light elements.	4 Micron	3" x 300' Roll	FOL04-R3
	4 Micron	3" x 3" Squares	FOL04-33
	4 Micron	2.5" Dia. Circles	FOL04-S64
	6 Micron	3" x 300' Roll	FOL06-R3
	6 Micron	3" x 3" Squares	FOL06-33

Polycarbonate	Thickness (microns)	Film Size & Shape	Product No.
Features excellent X-Ray transmission characteristics and good chemical resistance.	2 Micron	3" x 300' Roll	FPC02-R3
	5 Micron	3" x 300' Roll	FPC05-R3
		Also available in pr	Also available in pre-cut circles or squares

Also available in 1.5, 3.6 & 12.7 micron thickness

Polypropylene	Thickness (microns)	Film Size & Shape	Product No.
General purpose film with good transmission and chemical resistance (Note: may contain Al, Ca, Cu, Fe, P, Ti, Zn, Zr).	4 Micron	3" x 300' Roll	FPP16-R3
	5 Micron	2.5" Dia. Circles	FPP20-C64
	6 Micron	3" x 300' Roll	FPP25-R3
		Also available in pre-cut squares	

Teflon® Microporous	Film Size & Shape	Product No.
Gas permeable Microporous Teflon® allows pressure or gas equalization between the sample cell and instrument.	2.5" x 200'	FPTFE-R64

Accessories & Tools for XRF

Cup Press Plates (consists of 2 parts)

Easy to use, 3" diameter, tool made of polyethylene that simplifies the task of XRF Sample Cup assembly and makes simple work of setting Tri-Lock taut thin film sample support windows. Two parts – the assembly base and top plate.

Cup Size (mm)	Product No.
25	CPP25
31	CPP31
40	CPP40
43/45	CPP45

Cup Positioning Guides

Convenient and re-usable guides that achieve secured and centered positioning of smaller sample cups in larger sample holders.

Cup Size (mm)	Product No.
25	CPG25
31	CPG31
40	CPG40
45	CPG45

Sample Cup Trays

Chemical resistant polyethylene trays for holding, transporting or storing XRF sample cups/caps. Made to protect Thin–Film windows from damage or contamination in either single or stacked mode.

Cup Size (mm) to hold	No. Cups Per Tray	Product No.
25	15	CT25
31	15	CT31
40	15	CT40
43	8	CT43
45	8	CT45
50/52	6	CT50

Section 4 Consumables

Autosampler Cups & Tubes ICP & ICP-MS Consumables AA & GFAA Consumables

XRF Consumables XRF Sample Cups

- ► Thin Films
- XRF Accessories

Graphite Crucibles

Section 4 Consumables

VHG Tips

VHG Labs' crucibles are made using a unique high temperature and vacuum purification process. This eliminates gas impurities and ensures optimal analytical results.

Graphite Crucibles

For Gas Determination Analyzers

- Made from special, high-purity graphite with proper electrical characteristics
- Machined to exact dimensions to ensure good contact with electrode and proper thermal characteristics
- Ultrasonically cleaned to remove machining dust; then dried
- Undergo final purification and degassing; then cooled under vacuum or nitrogen to provide maximum purity

LECO Models EF-100, TC-136 to 436, TN-114 to 414, RO-116 to 416			
Item/Specifications	Mfg. No.	VHG Product No.	
Crucible: designed for typical nitrogen/oxygen analysis	776-247	F776247	
Crucible: designed for high temp. alloys and refractories	782-719/720	F782720	
Inner Crucible—uniform temp.; for use with F775433	775-431/892	F775431	
Outer Crucible–uniform temp.; for use with F775431	775-433	F775433	

LECO Models EF-10, RH-1, 1E&EN, RH2/3, RH-402&404EN, TN-14/15, RO-16/17, TC30/36			
Item/Specifications	Mfg. No.	VHG Product No.	
Short Crucible, degassed (for LECO RH-2, RH-402)	769-520	F769520	
Tall Crucible, degassed (for LECO RH-3, RH-402)	769-761	F769761	
Cover for F769520 & F769761	769-569	F769569	
Crucible (for LECO TN-15, TC-36, RO-17, RO-18, EF-10)	767-277	F767277	

Conversion Tables For Reference

Use these tables to find the information you need

Tubin	Tubing I.D. & Volumes			
I.D. (in.)	I.D. (mm.)	Vol. (μL/in)	Vol. (μL/cm)	
0.001	0.0254	0.0129	0.005	
0.01	0.254	1.287	0.507	
0.02	0.508	5.148	2.027	
0.04	1.016	20.59	8.107	
0.06	1.524	46.33	18.24	
0.08	2.032	82.37	32.43	
0.1	2.540	128.7	50.67	

Viscosity Conversion			
Centipoise (cp)*	Centistokes (cSt)	Examples	
1	1	water	
16.5	20.635	lotion	
40	43.2	veg. oil	
88	110	latex paint	
176	220	maple syrup	
352	440	SAE 30 oil	
*cp = cSt x (density in g/mL)			

Volu	me Co	onvers	ion	
CC (cm ³)	mL	Liter	FI. Oz.	Gallon
1.0	1.0	0.001	0.0338	2.64E-04
10	10	0.01	0.338	0.00264
29.57	29.57	0.0296	1.0	0.00781
3785	3785	3.785	128	1.0

Weigh	t Conv	ersion	
Pound (lb)	Ounce (oz)	Gram (g)	Kilogram (kg)
0.00220	0.0352	1.0	0.001
0.0625	1.0	28.38	0.0284
1.0	16	454	0.454
2.203	35.24	1000	1.0

Flow	Rate Co	nversio	n
L/min.	L/sec.	Gal./min (gpm)	. Gal./sec (gps)
3.785	0.0631	1.0	0.0167
227.1	3.785	60	1.0
1.0	0.0167	0.264	0.00440
60	1.0	15.85	0.264

1000 ppm standard	Dilutio	n Table				
Desired Content:	Volume 10	tric Size (25	mL) 50	100	250	
100ppm	1.0mL	2.5mL	5.0mL	10.0mL	25.0mL	me
10ppm	100µL	250µL	500µL	1mL	2.5mL	Volui
1ppm	(10µL)	25µL	50μL	100µL	250µL	٠
100ppb	*	(2.5µL)	(5µL)	(10µL)	25µL	Aliquot
10ppb	*	*	*	*	(2.5µL)	<u></u>
1ppb	*	*	*	*	*	⋖
		own with * obitious dilut	` '			

Pressur	e Conversior	า		
psi	bar	Pa (N/m²)	Torr	atm
1.45E-04	1.00E-05	1.0	0.00750	9.87E-06
0.0145	0.001	100	0.750	9.87E-04
0.0193	0.00133	133	1.0	0.00132
1.0	0.0689	6894	51.72	0.0680
10.0	0.689	68940	517	0.680
14.7	1.013	101,325	760	1.0
25.0	1.724	172,350	1293	1.701
50.0	3.447	344,700	2586	3.402
100	6.894	689,400	5172	6.805

Dimensi	on Conver	sion
U.S.A. Fractional	Metric	U.S.A Decimal
Inches		Inches
1/32	0.794mm	0.0313
n/a	1.00mm	0.0394
1/16	1.59mm	0.0625
1/8	3.18mm	0.125
1/4	6.35mm	0.250
5/16	7.94mm	0.313
3/8	9.53mm	0.375
n/a	10mm(1cm)	0.394
7/16	1.11cm	0.438
1/2	1.27cm	0.500
9/16	1.43cm	0.563
5/8	1.59cm	0.625
11/16	1.75cm	0.688
3/4	1.91cm	0.750
13/16	2.06cm	0.813
7/8	2.22cm	0.875
15/16	2.38cm	0.938
1	2.54cm	1.00
2	5.08cm	2.00
n/a	10.0cm	3.94
5	12.7cm	5.00
n/a	50.0cm	19.7
n/a	100cm(1m)	39.4

Reference Information

- Dilution
- Dimension
- Flow Rate
- Pressure
- ◆ Tubing I.D. & Volumes
- Viscosity
- Volume
- Weight

		We	Wear Metals Set	leta	ls S		for	XRI	F (F	for XRF (Part No: WRMTLSET-17X50G	No	\	VRI	JTL	SE	T-1,	7X5	(9 0				
	Ag	AI	Ва	Ca	рЭ	Cr	Cu	Fe	X	Mg	Mn	Mo	Na	Ä	Ь	Pb	Sb	Si	Sn	Ξ	^	Zn
Standard 1	0	0	0	0 2000	0	0	300	20	0	20	0	0	40	10	0	200	100	400	20	500	30	500
Standard 2	0	300	0	200	30	200	0	0	0	10	0	0	100	40	1000	10	0	20	20	400	0	700
Standard 3	0	0	300	300 3000	0	0	40	200	0	0	10	0	0	100	0	20	400	300	30	200	20	10
Standard 4	0	200	30	09	0	0	0	400	20	200	20	30	0	20	200	40	200	0	300	0	100	100
Standard 5	10	100	200	0	200	0	20	0	0	30	0	0	0	300	10	30	20	200	0	40	0	300
Standard 6	20	10	1500	1500 1000	0	20	0	200	40	0	300	20	30	200	100	0	0	100	400	0	0 1	1250
Standard 7	200	0	1000	10	20	300	10	0	30	1250	100	0	400	0	1500	200	0	0	0	20	40	20
Standard 8	300	20	20	100	100	400	400	30	10	2000	200	40	0	0	0	20	40	20	0	0	200	0
Standard 9	20	0	1250	1250 2000	300	20	0	100	0	1500	400	10	200	0	20	300	30	40	0	0	200	0
Standard 10	100	50	0	200	20	200	500	0	300	100	0	400	0	30	2000	0	10	0	10	20	0	0
Standard 11	30	0	2000	30	10	100	0	300	200	0	40	200	0	0	300	0	20	0	100	10	0 1	1000
Standard 12	40	200	10	300	40	0	0	0	200	200	20	200	10	400	1250	100	300	0	200	30	400 2000	000
Standard 13	400	30	700	0	400	40	200	10	100	100 3000	30	300	200	20	0	0	0	0	0	0	20 1	1500
Standard 14	500	0	0	0 1500	0	30	20	40	0	300	0	100	20	0	0	400	200	200	0	300	10	30
Standard 15	0	400	100	100 4000	200	10	100	20	20	0	0	0	300	200	200	0	0	30	40	0	0	0
Standard 16	0	40	0	0	0	0	30	0	400	1000	200	20	20	0	30	0	0	10	200	100	300	0
Standard 17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Standards not available for individual sale. See set information on Page 22.	lable for I	ndividua	ıl sale. S€	e set inf	ormation	ı on Paç	ye 22.															

CUSTOM METALLO-ORGANIC STANDARD

WORK SHEET AND QUOTE REQUEST

XRF

Please Fill Out One Element Table (Below) Per Standard Requested

METAL	UNITS	CONC.	METAL	UNITS	CONC.	METAL	UNITS	CONC.
Aluminum Al	μg/g		Copper Cu	μg/g		Rhodium Rh	μg/g	
Antimony Sb	μg/g		lodine I	μg/g		Selenium Se	μg/g	
Arsenic As	μg/g		Iron Fe	μg/g		Silicon Si	μg/g	
Barium Ba	μg/g		Lanthanum La	μg/g		Silver Ag	μg/g	
Beryllium Be	μg/g		Lead Pb	μg/g		Sodium Na	μg/g	
Bismuth Bi	μg/g		Lithium Li	μg/g		Strontium Sr	μg/g	
Boron B	μg/g		Magnesium Mg	μg/g		Sulfur S	μg/g	
Bromine Br	μg/g		Manganese Mn	μg/g		Thallium Tl	μg/g	
Cadmium Cd	μg/g		Mercury Hg	μg/g		Tin Sn	μg/g	
Calcium Ca	μg/g		Molybdenum Mo	μg/g		Titanium Ti	μg/g	
Cerium Ce	μg/g		Nickel Ni	μg/g		Vanadium V	μg/g	
Chlorine Cl	μg/g		Phosphorus P	μg/g		Yttrium Y	μg/g	
Chromium Cr	μg/g		Potassium K	μg/g		Zinc Zn	μg/g	
Cobalt Co	μg/g		Platinum Pt	μg/g		Zirconium Zr	μg/g	

Other:____

Instrument used for analysis (please circle one):

RDE

ICP

2-oz. Minimum. Units: w/w (μg/g) i	is assumed. YOU MUST SPECIFY IF OTHERWISE.
	n (mineral) oil, heavy hydrocarbon oil, xylene, kerosene. not shown in above table. Some may not be available and/o
Solvent: Volume (oz.):	Specify # bottles or special packaging reqs.
We will strive to quote within 24 hours (M-F). Please state anticipated product delivery requirements or if RUSH is needed.	
Name:	— End User? Yes 🗌 No 🗌
Company:	Name End User:
Address:	
Address:	
Phone Number:	Fax Number:
Fax number: (603) 622-5180	custsvc@vhglabs.com
Email, or phone us to discuss: (603) 622-7660 or (888) 622-7660	Return This Form To VHG Lab

CUSTOM AQUEOUS STANDARD

WORK SHEET AND QUOTE REQUEST

Please Fill Out One Element Table (Below) Per Standard Requested

METAL	UNITS	CONC.	METAL	UNITS	CONC.	METAL	UNITS	CONC.
Aluminum Al	μg/mL		Lead Pb	μg/mL		Tellurium Te	μg/mL	
Antimony Sb	μg/mL		Lithium Li	μg/mL		Terbium Tb	μg/mL	
Arsenic As	μg/mL		Lutetium Lu	μg/mL		Thallium Tl	μg/mL	
Barium Ba	μg/mL		Magnesium Mg	μg/mL		Thorium Th	μg/mL	
Beryllium Be	μg/mL		Manganese Mn	μg/mL		Thulium Tm	μg/mL	
Bismuth Bi	μg/mL		Mercury Hg	μg/mL		Tin Sn	μg/mL	
Boron B	ug/mL		Molybdenum Mo	μg/mL		Titanium Ti	μg/mL	
Cadmium Cd	μg/mL		Neodymium Nd	μg/mL		Tungsten W	μg/mL	
Calcium Ca	μg/mL		Nickel Ni	μg/mL		Uranium U	μg/mL	
Cerium Ce	μg/mL		Niobium Nb	μg/mL		Vanadium V	μg/mL	
Cesium Cs	μg/mL		Osmium Os	μg/mL		Ytterbium Yb	μg/mL	
Chromium Cr	μg/mL		Palladium Pd	μg/mL		Yttrium Y	μg/mL	
Cobalt Co	μg/mL		Phosphorus P	μg/mL		Zinc Zn	μg/mL	
Copper Cu	μg/mL		Platinum Pt	μg/mL		Zirconium Zr	μg/mL	
Dysprosium Dy	μg/mL		Potassium K	μg/mL		NC	N-METAL	S
Erbium Er	μg/mL		Praseodymium Pr	μg/mL		Bromine Br	μg/mL	
Europium Eu	μg/mL		Rhenium Re	μg/mL		Carbon C	μg/mL	
Gadolinium Gd	μg/mL		Rhodium Rh	μg/mL		Chlorine CI	μg/mL	
Gallium Ga	μg/mL		Rubidium Rb	μg/mL		lodine I	μg/mL	
Germanium Ge	μg/mL		Ruthenium Ru	μg/mL		Silicon Si	μg/mL	
Gold Au	μg/mL		Samarium Sm	μg/mL		Sulfur S	μg/mL	
Hafnium Hf	μg/mL		Scandium Sc	μg/mL				
Holmium Ho	μg/mL		Selenium Se	μg/mL		ISOTOPI	CS & SPE	CIATION
Indium In	μg/mL		Silver Ag	μg/mL				
Iridium Ir	μg/mL		Sodium Na	μg/mL		Ca	ıll us to discı	ISS
Iron Fe	μg/mL		Strontium Sr	μg/mL				
Lanthanum La	μg/mL		Tantalum Ta	μg/mL				

Instrument used for analysis (please circle one):

ICP-AES	ICP-MS	ΔΔ	GFAA	Other:	

100 mL minimum. Matrix: Water/dil. acid Units:	w/v (mg/L) is assumed. YOU MUST SPECIFY IF OTHERWISE.
Specify preferred acid	Specify # bottles or special packaging reqs.
We will strive to quote within 24 hours (M-F). Please state anticipated product delivery requirements or if RUSH is needed.	
Name:	— End User? Yes ☐ No ☐
Company:	Name End User:
Address:	Date
Address:	Email:
Phone Number:	Fax Number:
Fax number: (603) 622-5180, email or phone us to discuss: (603) 622-7660 or (888) 622-7660	custsvc@vhglabs.com Return This Form To VHG Labs

CUSTOM ION CHROMATOGRAPHY STANDARD

WORK SHEET AND QUOTE REQUEST

Let us prepare your ION CHROMATOGRAPHY stock standards to save you time and money, while removing a common source of day-to-day error. Our experienced team of chemists can promptly prepare and deliver reliable stock standards fully QC-checked in VHG's analytical testing laboratory.

- Custom standards are made from high purity raw materials and prepared with 18 Mohm DI water and made to the same NIST traceable quality requirements as our general product offerings.
- Each Custom Standard is shipped with a Certificate of Analysis sheet.

Please Fill Out One Element Table (Below) Per Standard Requested

IC ANALYTE	UNITS	CONC.	IC ANALYTE	UNITS	CONC.
Acetate	mg/L		Oxalate	mg/L	
Bromate	mg/L		Perchlorate	mg/L	
Bromide	mg/L		Phosphate	mg/L	
Chlorate	mg/L		Sulfate	mg/L	
Chloride	mg/L				
Chlorite	mg/L		Ammonium	mg/L	
Chromate	mg/L		Barium	mg/L	
Dichromate	mg/L		Calcium	mg/L	
Fluoride	mg/L		Lithium	mg/L	
Formate	mg/L		Magnesium	mg/L	
Glycolate	mg/L		Potassium	mg/L	
lodide	mg/L		Sodium	mg/L	
Nitrate	mg/L				
Nitrite	mg/L		Ammonia	mg/L	

NOTES:

100 mL Minimum. Matrix: Water Units: w/v (m	ng/L) is assumed. YOU MUST SPECIFY IF OTHERWISE.
Specify # bottles or special packaging reqs.	
We will strive to quote within 24 hours (M-F). Please state anticipated product delivery requirements or if RUSH is needed.	
Name:	_ End User? Yes No
Company:	Name End User:
Address:	Date:
Address:	
Phone Number:	Fax Number:
Fax number: (603) 622-5180 Email, or phone us to discuss:	custsvc@vhglabs.com
(603) 622-7660 or (888)622-7660	Return This Form To VHG Labs

ALPHA PRODUCT INDEX

A+ Single Element Standards		Lead in Gasoline Standards	
AA Ionization Buffers	43	Lead in Paint or Soil	
AA Standards		Lubricating Oil Standards	
AA Supplies	84, 96-99	Matrix Modifiers	43
Ammonia Standards for IC	45	Matrix Oils and Solvents	11-12, 25
AN (Acid Number) Reference Materials		Mercury Standards13, 20, 35, 40, 42, 53	, 55-56, 58, 62, 64, 69
Anion Standards for IC		Metal Additive Standards	
Aqueous Standards	34-71	Metallo-Organic Stds. & Concentrates10-11	
ASTM Petrochemical Test Standards		MBAS (Methylene Blue Active Substance)	
Atomic Absorption Standards		Mixing Tees	
Autosampler Cups & Tubes		Multi-Ion Standards for Ion Chromatography	
Binder & Briquetting Materials, Grinding Additives		Multi-Element Aqueous Standards	43, 46, 48-71
Biodiesel Standards		Multi-Element Metallo-Organic Standards10)-11, 14, 22-23, 28, 32
Bismuth Internal Standards		Multi-Element Wear Metal Standards	10, 14, 22
Blanks	11-12, 25, 62, 68	Multi-Element Standards for USEPA	60-64, 68-71
BN (Base Number) Reference Materials	15	Nebulizers for ICP and ICP-MS	88-93
BOD (Biochemical Oxygen Demand)		Nitrogen Standards	
Cation Standards for IC	45-46	Peri-Pump Tubing Flaring Tool	
Chlorine Standards		Peristaltic Pump Tubing	
Cloud Point Standards	,	Petroleum Standards	
CLP Standards		Physical Test Standards (Petroleum)	
Conductivity Standards		Polysulfide Oil Standards	
Cones for ICP-MS		Pour Point Standards	
Consumables for AA and GFAA		PTP (Performance Testing Program)	
Consumables for Gas Analysis		QC Check Standards	
Consumables for ICP-AES and ICP-MS	84-95	Quartzware for ICP and ICP-MS	88-93
Consumables for XRF	100-103	Reference Information	38-39, 57, 105-106
Conversion Tables for Reference	105	Releasing Agents	
Coolant Standards		RoHS Standards for XRF	
Crackle Test Reference Standards		Second Source Standards for ICP & ICP-MS	
Crucibles, Graphite for Gas Analyzers		Single-Element Aqueous Standards	
Cups and Caps for XRF		Single-Element Metallo-Organic Standards	
Custom Aqueous Standard Request Form		Silica Test Standard	
Custom Ion Chromatography Standard Request For		Soil and Sludge Reference Materials	
Custom Metallo-Organic Standard Request Form		Solids and Powders for XRF Analysis	
Cyanide Standards		Solvents and Matrix Oils	
Distillation Standards	17	Soot Content Standards	16
Drinking Water Standards	48, 55	Speciation Standards	40
Eluent Concentrates for IC	46	Spiking Solutions	
Environmental Standards47-		Spray Chambers for ICP and ICP-MS	
EPA Methods Standards		Stabilizer for Metallo-Organic Standards	
Flaring Tool for Peri-Pump Tubing		Stock Multi-Element Aqueous Standards	
Flash Point Standards		Stock Multi-Element Environmental Standards	
		Sulfur, Low-Level Analysis Standards	
	,,		
Flux		Sulfur and Metals in Oil Standards for XRF	
Freezing Point Standards		Sulfur Compounds by Selective Detection	
Fuel Dilution Standards		Sulfur in Petroleum Product Standards	
GFAA Consumables		Sulfur-Free, Metallo-Organic Standards	
Glassware for ICP, ICP-MS	88-93	Synthetic Distillation Standards	17
Graphite Tubes for GFAA	96-97	TCLP Standard	53
Graphite Crucibles	104	Thin Film for XRF Sample Cups	102
Halogen Standards		TOC (Total Organic Carbon) Standard	
Hollow Cathode Lamps		Torches for ICP and ICP-MS	
Hydride & Hg Cold Vapor Supplies		Tubing for Peristaltic Pumps	
ICP, ICP-MS Stds10-11, 13, 26, 28, 32, 34-37, 40-		Tuning, Optimization Standards	
		USEPA Method 200.7 Standards	
ICP, ICP-MS Torches and Supplies			
ICP-MS Cones		USEPA Method 200.8 Standards	
ICP-MS Cone and Lens Maintenance Kit		USEPA Method Standards 6010 & CLP	
Interference Check Samples for ICP-AES		USEPA Method Standards 6020 & CLP	
Interference Check Samples for ICP-MS		USEPA Method Standards Cross Reference Ch	
Internal Standards for ICP-MS Analysis		V21, V21+K, V23	
Internal Standards for Wear Metal Analysis		V-Solv™	12
Internal Standards for XRF Analysis		Viscosity Standards	
International Environmental Standards		Water Pollution Standards	
Ion Chromatography Standards		Water Supply Standards	
Ionization Buffers		Waters, Standard Tests	
		Wear Metal Standards	
Isotopic Standards			
Kjeldahl Standard		Wet Chemistry Standards	
Karl Fischer Titration Certified Reference Standards	17	XRF Standards	
		XRF Supplies	100-103

ALPHA INDEX BY PRODUCT NUMBER

44CS	60	GSP
44QCS	61	GTJA
4ICSAB	63	GVA
52SS	70	GVARQC
A_ (atomic abs. singles)	42	GVG
AM		HCL
AN		HG20
AR90.		HNO3
B_ (biodiesel)		I_(anions, cations)
B1K		ICB
BAX		ICL
		=
BIIS		ICM
BLKSOIL	_	ICSA
BN		ICV
BOD		IELUENT
C_ (cloud pt)		IHYD
CAP	101	INH3
CBX	77	INT
CCV	63	IPC
CFP	31	ISHG
CHP	.90. 94	ISIO2
CLOIL	, -	ISO
COD	_	ISQC
COND		JMSA
CN		KERO
CPG		KF
CPP		L_(single aq)
CRDL		L_(lamp)
CRQL	,	L2008
CRUDE	_	L53SSA
CSC	94	L54SSA
CT(cones)		LCAL
CT (crackle test ref.)	17	LCELL
CT (cup tray)	103	LDCAL
CUP10	00-101	LDPA
CVG	95	LHGN
CVHG	95	LICS
D180	.85-87	LICV1
D86		LICVMES
D Series (wear metals)		LINT
DS1		LIS (internal std.)
DSLFD		LIS_ (isotopic)
F_ (freeze pt)		,
_ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		LIS2008
· /		LIS6020
FAASC	_	LMCS
FATI		LMES
FGBC		LMSTNG
FHIT	96	LOD
FKP		LOIL
FMY	102	LPE
FOL0	102	LSAU
FP (flash pt.)	30	LSS
FPC		LTIMER
FPE		LTS2008
FPP3		LTS6020
FPSC	,	LUBESET
FPTFE		M_(matrix modifiers)
FVAR		MA
FVISC	_	MBAS
GASFD		MCS
GHP		MMC
GISA		MNIS
GLMN		MSX
GLY	16	NC
GNB88,	90-93	NP NWMR
GNB	90-93	

SSP	92
GTJA	
6VA	
SVARQC	97
GVG	
ICL	
IG20	.53, 64
INO3	.62, 68
_(anions, cations)	
CB	
CL	.44, 62
CM	46
CSA	
CV	62
ELUENT	46
HYD	47
NH3	45
NT	61
PC	61
SHG	
SIO2	
SO SQC	
MSA	
(ERO	40
(F	.11,∠5 47
(single aq)	17 34-37
(sirigle aq) (lamp)	
(lamp) .2008	90-99 50 60
53SSA	.59, 69 68
54SA	
CAL59,	69 70
CELL	
DCAL	66
DCALDPA	66 66
DCALDPA	66 66 62, 69
DCAL	66 66 62, 69 71 .59, 69
DCAL	66 66 62, 69 71 .59, 69
DCAL	66 66 62, 69 71 .59, 69 58
DCAL DPA HGN	66 66 62, 69 71 .59, 69 58 71
DCAL DPA HGN	66 66 .62, 69 71 .59, 69 58 71 66-67
DCAL DPA HGN	66 66 71 .59, 69 58 71 66-67 41
DCAL DPA HGN	66 66 62, 69 71 .59, 69 58 71 66-67 41
DCAL DPA HGN	66 66 62, 69 71 .59, 69 71 66-67 41 68 70
DCAL DPA HGN	66 66 62, 69 71 .59, 69 71 66-67 41 68 70 .53, 71
DCAL DPA HGN	66 66 62, 69 71 .59, 69 71 66-67 41 68 70 .53, 71 .58, 70
DCAL DPA HGN	66 66 62, 69 71 .59, 69 71 66-67 41 68 70 .53, 71 .58, 70 65
DCAL DPA HGN	66 66 62, 69 71 .59, 69 71 66-67 41 68 70 .53, 71 .58, 70 65 65
DCAL DPA HGN	6666 62, 6971 .59, 6971 .66-67416870 .53, 71 .58, 70656565
DCAL DPA HGN	

000		13
OIL	11,	25
OSF		
OY		
P_ (pour pt)		
P_ (single aq)		
P7		99
PBF		82
PBISO		20
T DIOO		20
PBP		82
PBX		77
PCR6W		40
PLS		
PMM		
PIVIIVI		.09
PMX		
PTFE		
PTP		19
QC48-49, 5	52	58
QW48-4	40	55
RMS		
ROHS		
ROSF		21
S20MIN		24
SB100		
SCRD		
SDSL		
SF-STAB		21
SGL		
SISO		25
SKERO		
SL		
SM		
SMIN		24
SMOIL		
SN		
SOOT		
SP_ (speciation)		40
SRC		
SRES		25
SSD1		80
SSEG		
STAB		
SUVF		27
T_ (single aq)	34-	37
T2100		89
TCLP		
TMM		ຂດ
TNG		60
TOC		
TOTKJN		47
TQ88, 9	90.	92
TR88, 90,		
	22	
III CDCI		/:>
ULSDSL		
UOP163		27
UOP163 V21		27 10
UOP163 V21		27 10
UOP163 V21 V21+K		.27 .10
UOP163 V21 V21+K V23		.27 .10 .10
UOP163 V21 V21+K V23 V-FLUX	78-	27 10 10 10 79
UOP163	 78- 11-	.27 .10 .10 .10 .79
UOP163	78- 11-	.27 .10 .10 .79 .12
UOP163	78- 11-	27 10 10 10 79 12 30
UOP163	78- 11-	27 10 10 10 79 12 30
UOP163	78- 11-	27 10 10 10 79 12 30 19 64
UOP163	78- 11-	27 10 10 10 79 12 30 19 64
UOP163	78-	27 10 10 10 79 12 30 64 64 54
UOP163	78-	27 10 10 10 79 12 30 19 64 64 54
UOP163	78- 11- 2, 1	27 10 10 10 79 12 30 19 64 64 54 06

SCOPE OF ACCREDITATION TO ISO GUIDE 34:2009

VHG LABS 276 Abby Road Manchester, NH 03103

Ms. Susan J. Evans Norris Phone: 603 622 7660 E-mail: sue@vhglabs.com

REFERENCE MATERIAL PRODUCER

Valid to: May 31, 2011 Certificate Number: 2848.02

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this Reference Material Producer for the production of certified reference materials of the following category:

Category	Concentration Ranges	Uncertainty	Method	Analytical Technique
Certified Reference M				reminque
A1.6 High Purity Meta		mical Solutions		
Single Element	1 to 50,000	Relative < 0.5%	NIST High	ICP-OES,
Standards	μg/mL		Performance ICP-OES	ICP-MS
Multi Element	1 to 50,000	+/-0.5% Relative	ICP-OES Aqueous	ICP-OES,
Standards	μg/mL		QD, ICP-MS-	ICP-MS
			Aqueous QD	
A3.4 Petroleum Produ				
Acid Number	0.1 To 3.0 mg KOH/g	2 - 30% Relative	ASTM D974	Titrimetry
Chlorine (Cl)	1 to 50,000	+/-1% Relative	ICP-OES-Aqueous	ICP-OES
	μg/mL		QD	
Lead (Pb)	0.001 to 5.0	+/-1% Relative	ICP-OES-Aqueous	ICP-OES
	g/gal		QD	
Moisture (H ₂ O)	0.1 to 1.0%	5% Relative	ASTM D6304	Karl Fischer,
				Titrimetry
Sulfur (S)	1 to 50,000	+/-1% Relative	ASTM D4294	XRF
	μg/g			
Single Element	1 to 300,000	1% Relative	ASTM D5185	ICP-OES
Standards	μg/g			
Multi Element	1 to 50,000	1% Relative	ASTM D5185	ICP-OES
Standards	μg/g			
A6.2 Wear Metals in C				
Single Element	1 to 300,000	1% Relative	ASTM D5185	ICP-OES
Standards	μg/g			
Multi-Element	1 to 50,000	+/-1% Relative	ASTM D5185	ICP-OES
Standards in Petroleum	μg/g			
Products				
C6.2 Viscosity	0-1000 cSt	0.32% Relative	ASTM D445	Viscometry /

(A2LA Cert. No. 2848.02) 07/13/2010

age 1 of 1

5301 Buckeystown Pike, Suite 350 | Frederick, Maryland 21704-8373 | Phone: 301 644 3248 | Fax: 301 662 2974 | www.A2LA.org

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

ANALYTICAL SERVICES DIVISION, VHG LABS

276 Abby Road Manchester, NH 03103

Ms. Susan J. Evans Norris Phone: 603 622 7660 E-mail: sue@vhglabs.com

CHEMICAL

Valid to: May 31, 2011 Certificate Number: 2848.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following tests on <u>aqueous and organic reference materials</u>, <u>cosmetics</u>, <u>paints and other surface coatings</u>, <u>plastics and polymers</u>, <u>consumer and children's products</u>, <u>wood</u>, <u>petroleum (oil, lubricants)</u>, <u>chemicals</u>, and <u>metals</u>:

<u>Tests</u> <u>Test Methods</u>

Spectroscopy

ICP-OES Elemental Analysis EN 71-3; Aqueous Quantitative & Semi-

Quantitative Determinations;

CPSC-CH-E1001-08; CPSC-CH-E1002-08,

CPSC-CH-E1003-09 ASTM D5185 (Modified);

ASTM F963; NIST High Performance ICP-OES

ICP-MS Elemental Analysis EN 71-3; Aqueous Quantitative & Semi-

Quantitative Determinations; CPSC-CH-E1001-08; CPSC-CH-E1002-08, CPSC-CH-1003-09;

ASTM F963

Flame AA EN 71-3; CPSC-CH-E1001-08; CPSC-CH-

E1002-08, CPSC-CH-E1003-09;

ASTM F963

XRF Elemental Analysis ASTM D4294 (Modified);

ASTM D7220

GC-MS CPSC-CHC1001-09.2

Physical Property

Viscosity ASTM D445

Wet Chemistry

(A2LA Cert. No. 2848.01) Revised 07/30/2010

Titration ASTM D974, ASTM D6304

Page 1 of 1

United Registrar Services, LLC.

hereby certifies that

VHG Labs Inc. 276 Abby Road Manchester, NH 03103

has established and applies a quality system for

Production, manufacturing, and distribution of spectrochemical solution standards and supplies

An on-site audit was performed and documented. Proof has been furnished that the requirements according to

ISO 9001: 2008

are fulfilled.

Further clarification regarding the scope of this certificate and the applicability of *ISO 9001:2008* requirements may be obtained by contacting the United Registrar Services, LLC.

Certificate Registration No. 10-1045

The certificate is valid from

May 21, 2010

The certificate is valid until May 20, 2013

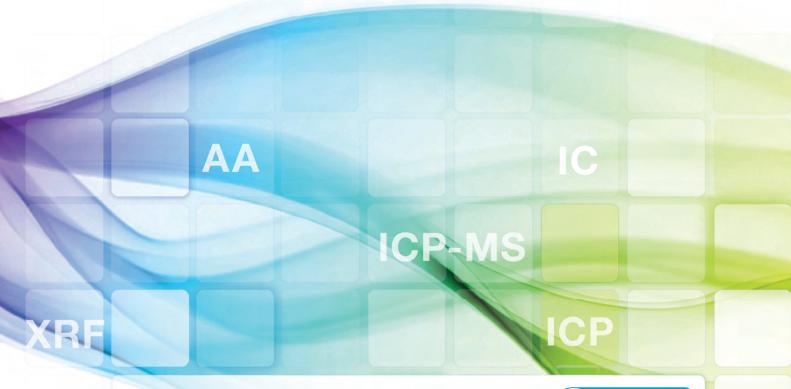
Date of issue: May 26, 2010

<u>Michael Hopkins</u>

Quality Systems Division

www.unitedregistrars.com

TGA -ZM-04-06-00


For a Full Color, Two Sided Laminated Table With Isotopes, Call VHG Labs Today!

www.vhglabs.com ©VHG Technical Publications copyright 2003 Š He Ā 궇 ×e R 222.02 86 131.30 20.18 39.95 83.80 4.0 6 ш 17 35 늅 85 ₹ $\overline{0}$ 53 126.90 725.665 200000 163.340 7000 178.276 40 209.99 35.45 79.90 0.046 AA Working Ranges: The lower limit is approximately 10x the Detection Limit. Upper limit of approximately 0.005 Se <u>1</u> 16 0 ഗ 8 25 Ъ 208.98 84 180.731 20 196.026 30 127.60 32.07 214.281 78.96 0.276 214.3 5-180 0.016 Sb | 0.032 196.0 As 1500-20000 6.0 **P** 15 33 208.98 83 Z 121.76 206.833 20 174.272 50000 223.061 50 188.979 14.01 30.97 <0.001 0.010 0.002 193.7 223.1 0.9 Ge S 9 0.8 Absorbance. В 4 <u>...</u> 32 20 82 C 193.026 251.611 189.926 12.01 0.004 0.007 5-260 Ga _ 73 49 മ ₹ 31 204.38 81 (603) 622 -7660 (603) 622 -5810 (888) 622 -7660 117.206 114.82 325.609 167.079 249.773 190.864 Manchester, NH 03103 26.98 396.2 294.4 25-200 50-260 10.81 276.8 5-200 0.021 0.013 0.001 . 169 276 Abby Road The detection limit is defined as an analyte concentration providing 3-sigma for a blank; on mass at 5s integration. The values were rounded to the nearest 0.001 ppb and are Ë Zu intended only as an aid to method development. Asterisked 30 ပ္ပ 253.7 100-3600 228.8 0.15-2.6 200.59 184.950 10 112.41 214.438 65.39 0.001 0.034 213.9 0.05-2 0.018 9 Ag Toll Free: D O A tems were run under "cool plasma" conditions. 29 Voice: 107.87 196.97 328.068 242.795 Fax: 분 63.55 328.1 0.25-8 324.7 1-26 0.003 0.001 Ideal Stabilizing 242.8 5-40 0.001 ₾ Matrix ᄗ В z 置 195.09 340.458 30 231.604 106.42 244.8 15-120 214.423 266.0 10-900 232.0 5-50 0.002 0.023 0.001 20 Š N CP-MS Detection Limit: ပ္ပ 牊 느 192.22 77 9 ₹ 250.429 23 224.268 20 102.91 <0.001 58.93 0.003 <0.001 240.7 343.5 208.9 ⋚ Atomic Number SO R Е 26 44 £ 108 225.585 0.4 101.07 240.272 238.204 0.003* 349.9 190.2 0.004 248.3 290.9 0.002 3 Zn 213.856 62.39 Re 0.008 Mn ပ 0.05 - 222 0.018 107 ВР 257.610 0.4 221.426 6 186.21 XIB 54.94 <0.001 262.1 279.5 0.5-7 346.1 of an analyte that will give a signal equal to twice the standard deviation of ten 10-second measurement on blank at the analytical line peak. ICP- MS detection limit ug/L (ppb) ICP Detection Limit ug/L (ppb) ICP Primary Wavelength (nm) AA Wavelength (nm) GFAA working range ug/L (ppb) The detection limit is defined as the concentration Atomic Weight <u>∞</u> ပ် 24 106 Sg ≥ 183.85 202.030 0.002 263.1 0.027 g 105 g <u>⊐</u> 180.95 240.063 262.1 <0.001 0.002 92.91 0.001 Ž 104 쬬 **Detection Limit:** 178.49 264.141 10 364.3 25-460 339.198 334.941 261.1 0.011 307.3 0.002 0.001 Sc g 39 88 Ac 22 7 371.030 0.5 361.384 138.91 379.478 <0.001 <0.001 410.2 227.0 391.2 88.91 <u>m</u> 0.038 0.001* Mg Ca Be <0.001 **Ba** ഗ് 226.03 88 Ra 137.33 56 455.403 0.3 393.366 0.1 407.771 0.1 313.042 0.2 279.533 0.1 40.08 <0.001 553.6 2- 120 87.62 24.31 0.010* 234.9 285.2 0.2-2 422.7 460.7 ≝ 9.01 2.2 R_D S 0.015* Na 19 工 22 220.02 87 占 132.91 588.995 766.490 80 670.784 455.531 22.99 780.02 300 589.0 0.25-2 39.10 780 2.5-12 766.5 0.005* 0.002 4000 ₹ 5

140.12 58	10.12 58 140.91 59 144.24	9 144.2	_	146.92 61	50 146.92 61 150.36 62 151.97 63 157.25 64 158.93 65 162.5 66 164.93 67 167.26 68 168.93 69 173.04 70 174.97 71	151.97 63	157.25 64	158.93 65	162.5 66	164.93 67	167.26 68	168.93 69	173.04 70	174.97 71
418.660	417.939 20	401.225	5		359.262 20	381.967 2	342.247 10	350.917 20	353.170 345.600 8 4	345.600 4	337.276 346.220 6 4		328.937 3	261.542 3
520.0	495.1	492.5			429.7	459.4 25-160	368.4	432.7 5-36	421.2 50.360	410.4 0.4-160	400.8 100 -760	371.8	398.8	336.0
<0.001 Ce	40.001 Ce <0.001 Pr 0.001 Nc	L 0.001	7	Pm	$Pm_{0.002} Sm_{0.002} Eu_{0.001} Eu_{0.001} Gu_{0.001} Tb_{0.001} Tb_{0.001} Dy_{0.001} Ho_{0.001} Er_{0.001} Tm_{0.001} Yb_{0.001} Lu_{0.001} Lu_{0.001$	<0.001 Eu	<0.001 Gd	4 Tb	Dy Dy	-0.001 Ho	0.001 Er	40.001 Tm	O.001 Yb	<0.001 Lu
232.04 90	232.04 90 231.04 91 238.03	1 238.03		237.05 93	32 23.05 33 244.06 94 243.06 95 247.07 96 247.07 97 251.08 98 252.08 99 257.1 100 258.1 100 258.1 100 259 102 260 103	243.06 95	247.07 96	247.07 97	251.08 98	252.08 99	257.1 100	258.1 100	259 102	260 103
283.73 30		385.958 100	®											
		358.5												
0.001 Th	ሏ	Pa <0.001	\supset	_d		Pu Am Cm	Cm	ᄶ	Ç	Es	Fm	Md	Š	Γĸ

Quality. Traceability. Dependability. Worldwide

VHG Labs 276 Abby Road • Manchester, NH 03103 603.622.7660 • 888.622.7660 • www.vhglabs.com

